An Implementation of Conditional Random Fields in pytorch
Project description
Torch CRF
Implementation of CRF (Conditional Random Fields) in PyTorch
Requirements
- python3 (>=3.6)
- PyTorch (>=1.0)
Installation
$ pip install TorchCRF
Usage
>>> import torch
>>> from TorchCRF import CRF
>>> device = "cuda" if torch.cuda.is_available() else "cpu"
>>> batch_size = 2
>>> sequence_size = 3
>>> num_labels = 5
>>> mask = torch.ByteTensor([[1, 1, 1], [1, 1, 0]]).to(device) # (batch_size. sequence_size)
>>> labels = torch.LongTensor([[0, 2, 3], [1, 4, 1]]).to(device) # (batch_size, sequence_size)
>>> hidden = torch.randn((batch_size, sequence_size, num_labels), requires_grad=True).to(device)
>>> crf = CRF(num_labels)
Computing log-likelihood (used where forward)
>>> crf.forward(hidden, labels, mask)
tensor([-7.6204, -3.6124], device='cuda:0', grad_fn=<ThSubBackward>)
Decoding (predict labels of sequences)
>>> crf.viterbi_decode(hidden, mask)
[[0, 2, 2], [4, 0]]
License
MIT
References
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
TorchCRF-1.0.7.tar.gz
(6.0 kB
view details)
Built Distribution
File details
Details for the file TorchCRF-1.0.7.tar.gz
.
File metadata
- Download URL: TorchCRF-1.0.7.tar.gz
- Upload date:
- Size: 6.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/39.0.1 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bcea092a0ebe92c6c57f91dc9fd05028e5a2307c9da417df50262b61d66e4a6a |
|
MD5 | ff65ec66fec2e24cca18f8cdc8bb1ce9 |
|
BLAKE2b-256 | 8f904825f7c3dd9588c0c28a523311486c7e4f447370971dca992ba8b27218f1 |
File details
Details for the file TorchCRF-1.0.7-py3-none-any.whl
.
File metadata
- Download URL: TorchCRF-1.0.7-py3-none-any.whl
- Upload date:
- Size: 6.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/39.0.1 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c9f472d505ee4e06b2731a53f1c7d2547afa87e6376a5d9e28179edeb8499196 |
|
MD5 | 341a923f68979ff65edd8d4c07140b2c |
|
BLAKE2b-256 | 072a7bccc71cd80fd712a976a2dc1a954f1677b5c966513a1f4d5c934054127f |