Skip to main content

Three-point clustering measurements in large-scale structure analyses.

Project description

https://github.com/MikeSWang/Triumvirate/raw/main/docs/source/_static/Triumvirate.png

Three-Point Clustering Measurements in LSS

CI Docs Release

Triumvirate is a Python/C++ software package for measuring three-point (and two-point) clustering statistics in large-scale structure (LSS) cosmological analyses.

Documentation

Comprehensive documentation including the scientific background, installation instructions, tutorials and API reference can be found at triumvirate.readthedocs.io.

Installation

Python package

PyPI conda

Triumvirate as a Python package is distributed through PyPI and conda. Instructions for installation can be found on the Installation page in the documentation.

C++ library & program

Triumvirate as either a static library or a binary executable can be built using make. Instructions for compilation can be found on the Installation page in the documentation.

Development mode

Both the Python package and the C++ library/program can be set up in development mode with make, provided that dependency requirements are satisfied (GSL and FFTW3 libraries are mandatory while an OpenMP library is optional).

First git clone the desired branch/release from the GitHub repository and change into the repository directory path:

$ git clone git@github.com:MikeSWang/Triumvirate.git --branch <branch-or-release>
$ cd Triumvirate

Then, execute in terminal:

$ make clean
$ make [py|cpp]install [useomp=(true|1)]

where cpplibinstall or cppappbuild respectively builds the C++ static library or binary executable only, cppinstall builds both, pyinstall builds the Python package only, and install builds all of the above. To enable OpenMP parallelisation, append useomp=true or useomp=1 to the end of the second line as shown above.

Attribution

JOSS arXiv MNRAS MNRAS

To acknowledge the use of Triumvirate in your published research, please cite the publications linked above which contain the relevant information in the BibTeX format.

Acknowledgement

ERC

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 853291).

Key underlying numerical algorithms were originally developed by Naonori S Sugiyama, and are available in the GitHub repository hitomi.

Contributing

User feedback and contributions are very welcome. Please refer to the contribution guidelines.

Discussions

A community forum for users and developers is hosted on GitHub, where you can receive announcements, post questions, share ideas and get updates.

Releases

Release notes are included in the change log.

Licence

GPL-3.0 Licence

Triumvirate is made freely available under the GPL-3.0 licence. Please see Licence (located at the repository directory root) for full terms and conditions.

&copy; 2023 Mike S Wang & Naonori S Sugiyama

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Triumvirate-0.2.0.tar.gz (1.2 MB view details)

Uploaded Source

Built Distributions

Triumvirate-0.2.0-cp311-cp311-manylinux_2_28_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

Triumvirate-0.2.0-cp311-cp311-macosx_10_9_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

Triumvirate-0.2.0-cp310-cp310-manylinux_2_28_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

Triumvirate-0.2.0-cp310-cp310-macosx_10_9_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

Triumvirate-0.2.0-cp39-cp39-manylinux_2_28_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

Triumvirate-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

Triumvirate-0.2.0-cp38-cp38-manylinux_2_28_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

Triumvirate-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file Triumvirate-0.2.0.tar.gz.

File metadata

  • Download URL: Triumvirate-0.2.0.tar.gz
  • Upload date:
  • Size: 1.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for Triumvirate-0.2.0.tar.gz
Algorithm Hash digest
SHA256 b34180afcdef79bc4dccc52a47a9fea690d96579cf0c4bde3981a07d02b02a31
MD5 e20f2c458e0e5f9bff7546e914f52453
BLAKE2b-256 03d2a80ba1fdbe5e5f9ffdf00f97d745e1a5fd01b7e9820cec071bf15f4d84dc

See more details on using hashes here.

Provenance

File details

Details for the file Triumvirate-0.2.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for Triumvirate-0.2.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 5525794d004b9dbbbcfa1cc0649941a82fb0f9853880f168d1f88f3eac69676d
MD5 de47c4060d64bbcbd8d66ae49e97083c
BLAKE2b-256 f24ab938042258cdb47c8845b78b2a83c69dd2bb0d7dd3a6bc860d270c12f6b4

See more details on using hashes here.

Provenance

File details

Details for the file Triumvirate-0.2.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for Triumvirate-0.2.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 79367dc86a4db86a446e0e058f9e8b3d3e909f9099763b4d47d53c4b4a8d4939
MD5 6b2a87cf1778eeaadc13eac181bd012c
BLAKE2b-256 04a5f289ff0696974afcfd7605c3fa8e772f901fa2d1c153ce6bbac08c4137f8

See more details on using hashes here.

Provenance

File details

Details for the file Triumvirate-0.2.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for Triumvirate-0.2.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 0c41b4f7e5dccba57a779214ce37921befe928c8a7e6b624082cfa099947d6ba
MD5 d263aa9158baf479b29906472850790d
BLAKE2b-256 5ebe6fd617f8b7c9935e7b54c800d8c35cd0585e222bed4db00a972b9658c9ec

See more details on using hashes here.

Provenance

File details

Details for the file Triumvirate-0.2.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for Triumvirate-0.2.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8fa8373dc2bc1648ccb81e9a124e40b0fbc8a068ef9bcf8324b75fcad9d9141c
MD5 4775e060ca6cefb9c5375456674be3a1
BLAKE2b-256 d9a5b9c7200f7a27d7b468a851e8921e7b9241113ce79ed3d93c83a5622d98da

See more details on using hashes here.

Provenance

File details

Details for the file Triumvirate-0.2.0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for Triumvirate-0.2.0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 cb5f41144dd961d0117c72c918a7d9570163a221b4dc4f332dd3409ca4e42451
MD5 17ddbbb5b2d3e64de5d09afb306517ca
BLAKE2b-256 768ec656368c639eca2993d3d761770295f31529a64de3c253613824d9bd816d

See more details on using hashes here.

Provenance

File details

Details for the file Triumvirate-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for Triumvirate-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 648b2159ce55cca3c5864e632ce6158669a5888bf022a5963ce5c03680eedfdc
MD5 7eb4085ed2411b7c88b8b9db9b5ea402
BLAKE2b-256 5fc68a984d9e62dad38399659be7061714584711f08222c1003b30d2447f7000

See more details on using hashes here.

Provenance

File details

Details for the file Triumvirate-0.2.0-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for Triumvirate-0.2.0-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 29ac94e33cc278ce42fc0243a808e8e29d89e733276af2cf07501ca11885eeec
MD5 7812e0c1d64c238b3e970264556e9e4e
BLAKE2b-256 1dcf333d6a6ba3b51527a52effac4d0536f190294ce24a273643db1dd1e21a2c

See more details on using hashes here.

Provenance

File details

Details for the file Triumvirate-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for Triumvirate-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a53593f7cc337d5456baa2ccb716ab5e062cebca13734bf60bbd9b2d677559de
MD5 0dc8675c03402f4abfca6a16a4de235e
BLAKE2b-256 108ec38376ad7835dbfa686dac5db124fef82ffa915980abd22b6810a608a192

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page