Skip to main content

Universal Read Analysis of DIMErs

Project description

URAdime

URAdime (Universal Read Analysis of DIMErs) is a Python package for analyzing primer sequences in sequencing data to identify dimers and chimeras.

Installation

pip install uradime

Usage

URAdime can be used both as a command-line tool and as a Python package.

Command Line Interface

# Basic usage
uradime -b input.bam -p primers.tsv -o results/my_analysis

# Full options
uradime \
    -b input.bam \                    # Input BAM file
    -p primers.tsv \                  # Primer file (tab-separated)
    -o results/my_analysis \          # Output prefix
    -t 8 \                            # Number of threads
    -m 1000 \                         # Maximum reads to process (0 for all)
    -c 100 \                          # Chunk size for parallel processing
    -u \                              # Process only unaligned reads
    --max-distance 2 \                # Maximum Levenshtein distance for matching
    --window-size 20 \                # Allowed padding on the 5' ends of the reads, sometime needs to be very big due to universal tails etc.
    --ignore-amplicon-size \          # Usefull if short read sequecing like Illumina
    --downsample 5.0 \                # Percentage of reads to randomly sample from the BAM file (0.1-100.0)
    -v                                # Verbose output

Python Package

from uradime import bam_to_fasta_parallel, create_analysis_summary, load_primers

# Load and analyze BAM file
result_df = bam_to_fasta_parallel(
    bam_path="your_file.bam",
    primer_file="primers.tsv",
    num_threads=4
)

# Load primers for analysis
primers_df, _ = load_primers("primers.tsv")

# Create analysis summary
summary_df, matched_pairs, mismatched_pairs = create_analysis_summary(result_df, primers_df)

Input Files

Primer File Format (TSV)

The primer file should be tab-separated with the following columns:

  • Name: Primer pair name
  • Forward: Forward primer sequence
  • Reverse: Reverse primer sequence
  • Size: Expected amplicon size

Example:

Name    Forward             Reverse             Size
Pair1   ATCGATCGATCG       TAGCTAGCTAGC       100
Pair2   GCTAGCTAGCTA       CGATTCGATCGA       150

Output Files

The tool generates several CSV files with the analysis results:

  • *_summary.csv: Overall analysis summary
  • *_matched_pairs.csv: Reads with matching primer pairs
  • *_mismatched_pairs.csv: Reads with mismatched primer pairs
  • *_wrong_size_pairs.csv: Reads with correct primer pairs but wrong size

Requirements

  • Python ≥3.7
  • pysam
  • pandas
  • biopython
  • python-Levenshtein
  • tqdm
  • numpy

License

This project is licensed under the MIT License - see the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

uradime-0.1.3.tar.gz (104.2 MB view details)

Uploaded Source

Built Distribution

uradime-0.1.3-py3-none-any.whl (9.0 kB view details)

Uploaded Python 3

File details

Details for the file uradime-0.1.3.tar.gz.

File metadata

  • Download URL: uradime-0.1.3.tar.gz
  • Upload date:
  • Size: 104.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.2

File hashes

Hashes for uradime-0.1.3.tar.gz
Algorithm Hash digest
SHA256 1ebe9ba8930f957e736e5460e91e13aafeb44653429153138f09abc346c3276e
MD5 0d87aad8c14d0d7641ee5d788b628d5e
BLAKE2b-256 a8b99e99efee1d86504015e386d3071202a8cf386aff4a835ede1f9fc4406c30

See more details on using hashes here.

File details

Details for the file uradime-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: uradime-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 9.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.2

File hashes

Hashes for uradime-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 c082ba42ee253663aa2b20e9cb0461cd08ef446a23639b290341b13860a6b910
MD5 aa8ea63607f557a6368df787564be857
BLAKE2b-256 a843ee2a0db485222f64936e3de630b515d53b5e55108436e95edb854632f6ed

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page