Skip to main content

Universal Read Analysis of DIMErs

Project description

URAdime

URAdime (Universal Read Analysis of DIMErs) is a Python package for analyzing primer sequences in sequencing data to identify dimers and chimeras.

Installation

pip install uradime

Usage

URAdime can be used both as a command-line tool and as a Python package.

Command Line Interface

# Basic usage
uradime -b input.bam -p primers.tsv -o results/my_analysis

# Full options
uradime \
    -b input.bam \                    # Input BAM file
    -p primers.tsv \                  # Primer file (tab-separated)
    -o results/my_analysis \          # Output prefix
    -t 8 \                            # Number of threads
    -m 1000 \                         # Maximum reads to process (0 for all)
    -c 100 \                          # Chunk size for parallel processing
    -u \                              # Process only unaligned reads
    --max-distance 2 \                # Maximum Levenshtein distance for matching
    --unaligned-only \                # only check the unaligned reads  
    --window-size 20 \                # Allowed padding on the 5' ends of the reads, sometime needs to be very big due to universal tails etc. setting this parameter too large can cause unexpected results
    --ignore-amplicon-size \          # Usefull if short read sequecing like Illumina where the paired read length is not the size of the actual amplicon
    --check-termini \                 # Turn off check for partial matches at read termini
    --terminus-length 14 \            # Length of terminus to check for partial matches
    --overlap-threshold 0.8 \         # Minimum fraction of overlap required to consider primers as overlapping (0.0-1.0), this is added for hissPCR support
    --downsample 5.0 \                # Percentage of reads to randomly sample from the BAM file (0.1-100.0)
    -v                                # Verbose output

Python Package

from uradime import bam_to_fasta_parallel, create_analysis_summary, load_primers

# Load and analyze BAM file
result_df = bam_to_fasta_parallel(
    bam_path="your_file.bam",
    primer_file="primers.tsv",
    num_threads=4
)

# Load primers for analysis
primers_df, _ = load_primers("primers.tsv")

# Create analysis summary
summary_df, matched_pairs, mismatched_pairs = create_analysis_summary(result_df, primers_df)

Input Files

Primer File Format (TSV)

The primer file should be tab-separated with the following columns:

  • Name: Primer pair name
  • Forward: Forward primer sequence
  • Reverse: Reverse primer sequence
  • Size: Expected amplicon size

Example:

Name    Forward             Reverse             Size
Pair1   ATCGATCGATCG       TAGCTAGCTAGC       100
Pair2   GCTAGCTAGCTA       CGATTCGATCGA       150

Output Files

The tool generates several CSV files with the analysis results:

  • *_summary.csv: Overall analysis summary
  • *_matched_pairs.csv: Reads with matching primer pairs
  • *_mismatched_pairs.csv: Reads with mismatched primer pairs
  • *_wrong_size_pairs.csv: Reads with correct primer pairs but wrong size

Requirements

  • Python ≥3.7
  • pysam
  • pandas
  • biopython
  • python-Levenshtein
  • tqdm
  • numpy

License

This project is licensed under GNU GPL.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

uradime-0.1.5.tar.gz (79.4 kB view details)

Uploaded Source

File details

Details for the file uradime-0.1.5.tar.gz.

File metadata

  • Download URL: uradime-0.1.5.tar.gz
  • Upload date:
  • Size: 79.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.2

File hashes

Hashes for uradime-0.1.5.tar.gz
Algorithm Hash digest
SHA256 e6a27634a373e386a0f1f0ba0971c5f392d96b98a14b5b08f5ae54c711092aaa
MD5 7ed00b4f4a6b8dde3f3b4969e0a7ce85
BLAKE2b-256 a0ec9be64e6918f61df03e56f32cd3b97b7717c52148cd76d3afef385e8a50c4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page