Skip to main content

Activity Recognition

Project description


Dataset Format:


An object is a primitive object, a vector or in the form of a tuple of data components:
Object ={o|     o is Primitive or
                o=[o_1, ... , o_n] such that o_i is Object(Vector of object) or
                o=(Prop_1, ... , Prop_n) forall i in {1...n}, Prop_i(o) is Object}

Time Object:

Time might be a point, in case of an instantaneous event, or an interval during if it is durative. Supported durative time is range.

time | [start_time:end_time]


Type Actor Time

Sensor Events:

(Type, Value) SensorId Time

Activity Events:

ActivityId ActorId Time


Sensor Info

Id Name Cumulative OnChange Nominal Range Location Object Sensor

Activity Info

Id Name

File format: CSV

Sensor Info:

Id Name Cumulative OnChange Nominal Range Location Object Sensor
int string bool bool bool json {min,max}/{items} string string string
in case of nominal sensors, the range contain items and for numeric sensors, the range contain min and max

Sensor events:

Type Value SensorId Time

Activity events:

ActivityId ActorId StartTime EndTime


\begin{Example}[Different Segmentation approaches] \end{Example} \begin{lstlisting}[mathescape=true] function Fixed time window(S,X,r,l) {//S=SegmentHistory, X=Events, //r=Shift, l=windowLength p=begin(S[last]) return X.eventsIn([p + r : p + r + l]); } function Fixed siding window(S,X,r,l) { prev_w=S[last]; p=begin(S[last]) be=first({e \in X| p + r $\leq$ time(e)} return X.eventsIn([be : be + l]); } function Significant events(S,X,m) {//m=significant events per segments se=significantEvents(X) $\subseteq$ X begin=time(se[1]);//next significant event end=time(se[1 + m]); return X.eventsIn([begin:end]); } //Probabilistic Approach given:(By analyzing training set) $ws(A_m)$ is average window size of activity $A_m$ $w_1 = min {ws(A_1), ws(A_2), ..., ws(A_M)}$ $w_L = median{ws(A_1), ws(A_2), ..., ws(A_M)}$ $w_l=(w_L-w_1)\times l/L+w_1$ $window_sizes= {w_1, w_2, . . . , w_L}$ $P(w_l /A_m)$//probability of windows length $w_l$ for an activity Am $P(A_m /s_i)$//probability of Activity $A_i$ associated with the sensor $s_i$. function Probabilistic Approach(S,X) { x=nextEvent(X) $w^{\star} =\underset{w_l}{max} {P(w_l /x)}=\underset{w_l}{max}[P(w_l /A_m)\times P(A_m /x)] $ end=time(x);//Next event return X.eventsIn(end-$w^\star$,end]); } function Metric base Approach(S,X) {//S=SegmentHistory, X=Events
indx=len(S[last])+1 //first event not in old segment $m_i=metric({X[indx],...,X[i]})$ find first i which $H({m_{0}....m_i})$ is true// return X.eventsIn([time(X[indx]):time(X[i])]); } function SWAB Approach(S,X,bs) {//bs=Buffer size
indx=len(S[last])+1 //first event not in old segment $m=BottomUp({X[indx],...,X[indx+bs]})$ return m[0]; } \end{lstlisting}

Similar Works

pyActLearn -> documents

Project details

Release history Release notifications | RSS feed

This version


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for UnifiedAR, version 1
Filename, size File type Python version Upload date Hashes
Filename, size UnifiedAR-1.tar.gz (50.6 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page