Skip to main content

Activity Recognition

Project description

DataSet

Dataset Format:

Object:

An object is a primitive object, a vector or in the form of a tuple of data components:
Object ={o|     o is Primitive or
                o=[o_1, ... , o_n] such that o_i is Object(Vector of object) or
                o=(Prop_1, ... , Prop_n) forall i in {1...n}, Prop_i(o) is Object}

Time Object:

Time might be a point, in case of an instantaneous event, or an interval during if it is durative. Supported durative time is range.

time | [start_time:end_time]

Event:

Type Actor Time

Sensor Events:

(Type, Value) SensorId Time

Activity Events:

ActivityId ActorId Time

DataInformation:

Sensor Info

Id Name Cumulative OnChange Nominal Range Location Object Sensor

Activity Info

Id Name

File format: CSV

Sensor Info:

Id Name Cumulative OnChange Nominal Range Location Object Sensor
int string bool bool bool json {min,max}/{items} string string string
in case of nominal sensors, the range contain items and for numeric sensors, the range contain min and max

Sensor events:

Type Value SensorId Time

Activity events:

ActivityId ActorId StartTime EndTime

Approaches

\begin{Example}[Different Segmentation approaches] \end{Example} \begin{lstlisting}[mathescape=true] function Fixed time window(S,X,r,l) {//S=SegmentHistory, X=Events, //r=Shift, l=windowLength p=begin(S[last]) return X.eventsIn([p + r : p + r + l]); } function Fixed siding window(S,X,r,l) { prev_w=S[last]; p=begin(S[last]) be=first({e \in X| p + r $\leq$ time(e)} return X.eventsIn([be : be + l]); } function Significant events(S,X,m) {//m=significant events per segments se=significantEvents(X) $\subseteq$ X begin=time(se[1]);//next significant event end=time(se[1 + m]); return X.eventsIn([begin:end]); } //Probabilistic Approach given:(By analyzing training set) $ws(A_m)$ is average window size of activity $A_m$ $w_1 = min {ws(A_1), ws(A_2), ..., ws(A_M)}$ $w_L = median{ws(A_1), ws(A_2), ..., ws(A_M)}$ $w_l=(w_L-w_1)\times l/L+w_1$ $window_sizes= {w_1, w_2, . . . , w_L}$ $P(w_l /A_m)$//probability of windows length $w_l$ for an activity Am $P(A_m /s_i)$//probability of Activity $A_i$ associated with the sensor $s_i$. function Probabilistic Approach(S,X) { x=nextEvent(X) $w^{\star} =\underset{w_l}{max} {P(w_l /x)}=\underset{w_l}{max}[P(w_l /A_m)\times P(A_m /x)] $ end=time(x);//Next event return X.eventsIn(end-$w^\star$,end]); } function Metric base Approach(S,X) {//S=SegmentHistory, X=Events
indx=len(S[last])+1 //first event not in old segment $m_i=metric({X[indx],...,X[i]})$ find first i which $H({m_{0}....m_i})$ is true// return X.eventsIn([time(X[indx]):time(X[i])]); } function SWAB Approach(S,X,bs) {//bs=Buffer size
indx=len(S[last])+1 //first event not in old segment $m=BottomUp({X[indx],...,X[indx+bs]})$ return m[0]; } \end{lstlisting}

Similar Works

pyActLearn -> documents

Project details


Release history Release notifications | RSS feed

This version

1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

UnifiedAR-1.tar.gz (50.6 kB view details)

Uploaded Source

File details

Details for the file UnifiedAR-1.tar.gz.

File metadata

  • Download URL: UnifiedAR-1.tar.gz
  • Upload date:
  • Size: 50.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2.post20191203 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.6.9

File hashes

Hashes for UnifiedAR-1.tar.gz
Algorithm Hash digest
SHA256 fe12d5907e7eeb61f0f1341db3e9daab35aee87a88332d577f913a6195fc1832
MD5 18a5254a7265c2b5c9407c28717232e6
BLAKE2b-256 55c054875e8985906bc5e8951ebe7acfa7f96ce74d964cc687c209c17b4dd546

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page