Skip to main content

A python module desgined for RL logging, monitoring and experiments managing.

Project description

UtilsRL

UtilsRL is a reinforcement learning utility python package, which is designed for fast integration into other RL projects. Despite its lightweightness, it still provides a full set of functions needed for RL algorithms development.

Currently UtilsRL is maintained by researchers from LAMDA-RL group. Any bug report / feature request / improvement is appreciated.

Installation

You can install this package directly from pypi:

pip install UtilsRL

After installation, you may still need to configure some other dependencies based on your platform, such as PyTorch.

Features & Usage

See the documentation for details. We are still working on the docs, and the final formal version v0.5.0 is comming up soon once we finish the docs.

Here we list some highlight features of UtilsRL:

  • Extremely easy-to-use and research friendly argument parsing. UtilsRL.exp.argparse supports several handy features for research:
    • loading arguments from both yaml, json, python files and command line
    • nested argument parsing
  • Well-implemented torch modules for Reinforcement Learning
    • common network structures: MLP, CNN, RNN, Attention, Ensemble Blocks and etc
    • policy networks with various output distributions
    • normalizers implemented in nn.Module, benefiting saving/loading by taking advantage of state_dict
  • Powerful experiment loggers.
  • Super fast Prioritized Experience Replay (PER) buffer. By binding c++-implemented data structures, we boost the efficiency of PER up to 10 times

We provide two examples, namely training PPO on mujoco tasks and training Rainbow on atari tasks as illustrations for integrating UtilsRL into your workflow (see examples/)

Acknowledgements

We took inspiration for module design from tianshou and Polixir OfflineRL.

We also thank @YuRuiii and @momanto for their participation in code testing and performance benchmarking.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

UtilsRL-0.5.0.tar.gz (45.0 kB view details)

Uploaded Source

Built Distributions

UtilsRL-0.5.0-pp39-pypy39_pp73-win_amd64.whl (130.3 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.5.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (170.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (178.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.5.0-pp38-pypy38_pp73-win_amd64.whl (130.2 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.5.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (172.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (178.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.5.0-pp37-pypy37_pp73-win_amd64.whl (130.1 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.5.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (173.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (179.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.5.0-cp310-cp310-win_amd64.whl (130.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

UtilsRL-0.5.0-cp310-cp310-win32.whl (120.1 kB view details)

Uploaded CPython 3.10 Windows x86

UtilsRL-0.5.0-cp310-cp310-musllinux_1_1_x86_64.whl (692.8 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

UtilsRL-0.5.0-cp310-cp310-musllinux_1_1_i686.whl (753.6 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

UtilsRL-0.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (177.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (184.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

UtilsRL-0.5.0-cp39-cp39-win_amd64.whl (130.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

UtilsRL-0.5.0-cp39-cp39-win32.whl (120.3 kB view details)

Uploaded CPython 3.9 Windows x86

UtilsRL-0.5.0-cp39-cp39-musllinux_1_1_x86_64.whl (693.2 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

UtilsRL-0.5.0-cp39-cp39-musllinux_1_1_i686.whl (753.7 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

UtilsRL-0.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (177.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (185.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

UtilsRL-0.5.0-cp38-cp38-win_amd64.whl (130.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

UtilsRL-0.5.0-cp38-cp38-win32.whl (120.2 kB view details)

Uploaded CPython 3.8 Windows x86

UtilsRL-0.5.0-cp38-cp38-musllinux_1_1_x86_64.whl (692.7 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

UtilsRL-0.5.0-cp38-cp38-musllinux_1_1_i686.whl (753.2 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

UtilsRL-0.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (177.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (184.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

UtilsRL-0.5.0-cp37-cp37m-win_amd64.whl (130.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

UtilsRL-0.5.0-cp37-cp37m-win32.whl (121.0 kB view details)

Uploaded CPython 3.7m Windows x86

UtilsRL-0.5.0-cp37-cp37m-musllinux_1_1_x86_64.whl (696.0 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

UtilsRL-0.5.0-cp37-cp37m-musllinux_1_1_i686.whl (757.0 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

UtilsRL-0.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (178.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (188.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

File details

Details for the file UtilsRL-0.5.0.tar.gz.

File metadata

  • Download URL: UtilsRL-0.5.0.tar.gz
  • Upload date:
  • Size: 45.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.0.tar.gz
Algorithm Hash digest
SHA256 f80b9ba845572e052600db4d29a0d551b6584c848f8dac74e875e5408c56c75d
MD5 8fce119f961c0afac583d0f88fb9dee2
BLAKE2b-256 4a874554c7dfb1c6852b3ff7a49b420d5518a694fa30b0ac3c5bf3fc94605373

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 4f8c727960d1a57a0db867600bc2dff0a7fdec220a98b88cc7236198059ba05f
MD5 2dd46e00871acd3f8440abb6b07b5818
BLAKE2b-256 bae2dbc1a43aa82d3dcbeccbdcdb9a2f3a818147b7971d28ae2d15c188db0f2f

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6b15b856243006bc90e20ad32425afeaba02426502c59788106bc69313110db8
MD5 93132312b41eaca8640ea416ac3713ea
BLAKE2b-256 bff621b373099fe0cefe1205f1a10344fe4f24ea2e60ad6a1fbf61d6afe56277

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2a10c011816bcc35745124bb898eec23667e347a60b8fb179d9f55b2e788dff5
MD5 2ac6d47a98492af546c261fa036d50cc
BLAKE2b-256 8c7e5a143c350688f8e23e7b8d4ea6f3eb332381fe140948c6fa02726e90a884

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 0ce45836481aee30cee232ce009be255c74dc5f5ef1f056fe76078e6cdd9237c
MD5 2678479fc9c3e2e976bfe97296a29c0f
BLAKE2b-256 b9b1f7f7e075f73d4e70a5241ea4a5abfdb5e2497c837ecd797dca77a2093b15

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 28fec9ec2c54fd5f0da77df11ceacc3f6e8f494d38e5f8def77b2d097874c9aa
MD5 9640c9b27375c37b1b86a79498edc040
BLAKE2b-256 e65ac7b897ab9ae04e82550a3fba568158015fc2c37b97466e387544b33ac48d

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cccbd199ad5ec5d7981283259a0db921b3996c08794ca1f5ff5f4c18f24ee222
MD5 f8c1825e14cf67cf8ac5ca71178fdca1
BLAKE2b-256 d5c84d6dcf18736b53f3f4faa12d3094c8ef46ffab6b5623813782cca574e31d

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 086ca96df2f7ff156f4531284f6d191d81bea88c4632a5f8643ebb1a887e2664
MD5 58ca5187d0b9c87f4c1ea8ac600fdf01
BLAKE2b-256 98878a7115113280613ab88e2a303b28b8cc76edf309337eaa51c5b260880b6a

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 79fd05830b71257db501774b0072b59938e6a98e113fc40d49fc34711dcd9272
MD5 d9f030d6a56affe2569e62edf04dcbef
BLAKE2b-256 533d02027c19a2c3560d81666900fba45e77eb596627afb6ac632c19ebda564b

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8b2fd03ff48d132c7badf3145810bdeccfc5809f3cd18876bd65c4f605f0b2e4
MD5 f7e6e082dafeb2b72f42f9ff98ec89dd
BLAKE2b-256 847896c01eb04d899b586e4e2361e053594f9d4eb1e4834d7e70803867e1b0ec

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 130.9 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 59e2ac14c12a951de7233155918e1c1821fe9ed62489addc69697349f2344758
MD5 350257379ca7fd7466391fb2bd2700a0
BLAKE2b-256 b01af6e9adf1299e16813b57a004ea50545dcf4cb3d4be31b351d1493fd6ff3f

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 120.1 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 1051e1bde394754964aeb50a5578865a8ff9ec3476fa3c410542ecb61caee63a
MD5 db1443e1d5c35257f0162ca7496d5b3e
BLAKE2b-256 b26f4938d2cb9de5e0f487848c5f13d43342593ca32da299895c3b5f136e1a5d

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 cf21ab54af50a8bc4c35198aba3ca1dc8368dc9d91a647f38bb4c4d18d6abb8c
MD5 e0165fc617898b7cb949dd0d4069a424
BLAKE2b-256 1281036687d7c32c6773aed2e9dcd66eb10011cfdcd885a701281736dd362ba9

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 395a322b606f5865e3394aa6d22e3154b4443d7f519e8c5c8694fffd80faced3
MD5 b0d55ef1bcf3d9478610f1e2b1abeab6
BLAKE2b-256 33564c03fce0d4f01d44ba256c92cf7985a413cf07d20e24ed120188333085ae

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8cd8c22f79fb52e4ea190da92c95ebf87095002c6f12b6b457731d3e4f15e7e5
MD5 1f01823036aabc8585b0e3a773b935ad
BLAKE2b-256 0fe8a5dcfcba495691bf2282e95b926bc065d978db17ad77f06caad1a9bf9a3f

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b9fa3b4d898b4bf85ed12e19c67501673bf1f1edfc4b783a688cd357005dfa55
MD5 df1a3175a4b7779c4bd384dc3c23f860
BLAKE2b-256 c02f02a30935006eaac16d73b1f4ac16c318c117238924f66003da5d164c88b2

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 130.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9e19d78a68d6d9b1b529f0a59f545b5dc298f6577c08c3c7b9262eea8599e2cd
MD5 a3d841804434b5276fa52911a3ecc1d5
BLAKE2b-256 4cdf99007925c5875c0a9b95924fa0e55c0e1c8b44d3e66f211ae913fd9546fb

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 120.3 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 81c4d6bcbe1edb786788a463673ab04cb82110975dbde04935ac1cc38a5a318a
MD5 f3f1961694e6d408b5b91c06752befb5
BLAKE2b-256 195834a451643f3fe550a1022b47514170e2d6f7fd408b1320767fbdaea63ca3

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a91e5255f172d8d1f3b148941d6cdb253dd87307d21b6fe73b9305f08128e698
MD5 7e6fdc7eb2457418dfb8a0a3717a8499
BLAKE2b-256 98a101c6dc854c66388a59eda9f109370ca425eb8a7e2e2844299077feae8d46

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 4b0427f750e9d7b55106dff2a3338648ef48f6e30c94abcabc1afc32bf8620fb
MD5 c080fcf9156b2a0ec87e176a9a32e8e7
BLAKE2b-256 75f623ea1821acda474622b9aa6b6ac34a382505e67fc11ba8430d050f347e46

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 320eeb86492d7a80aefdb844365afb925bd645b5fd46d4b31fe15f9002c57964
MD5 7e5813f35c2f41635035bdf52910c797
BLAKE2b-256 73a016719296c35dedb3974499975d2339521fd5eb9a98d25b858bcadcb90f54

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7011b98fe1e81e42a2d498df17cc5f656048878b96547c3c4b38af9b81312092
MD5 fd3ebdf15266bfddd46735b96e144363
BLAKE2b-256 f4462b4efc8b136e9eddd83596a1017622550b7f4a007152baaa78d70b9bd963

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 130.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9d7674ab56ed820718e72f1c9974951760566aba2c89380fd20d5a09cdaafe7c
MD5 04c25532a163ddc2b14be0ea8f7214f4
BLAKE2b-256 c68394bc9af2af96b430bc32b7f5f79ec1da354e029c0224ee0fba74db9175ec

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 120.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 f99a72c4c7fa6569cc54bb346252b3937a4e311e9bed96742c3472f1f87ab45b
MD5 b94435f915b0205ec1b895d3921faf5b
BLAKE2b-256 4319af51df5f86c6eaefaae1185591510359bd1054e12e17938b5f4e40a26f2a

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6295b8a931044b8b930768ac1f3ff94a740bde2a764f116e8e3be61a484194d7
MD5 7fe6f677a9cc4be3c133c57f7a1c9f8b
BLAKE2b-256 4b1cc6195e354a25ee1e6f47ecf1c6efe80f10ffb1a644ce1afba095ca1950e1

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 239cb8ba5c69113079a99277a5eb5eb6123a6f79a77eb7096b730ca43f7979bd
MD5 fe2813ae82dd057d4a0611e7d0fd0a2d
BLAKE2b-256 980d6b6ffd8c2fe03e2b2053aea9ff21f143a26b1b7178509156bd41fa9a9e25

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3aec15ec9691987c33fe9623a57b05e790e8fcb3c44f4cc324f8a1a7bdc35ae4
MD5 859b9c949d44ec5e53a22eb15accc548
BLAKE2b-256 f8656b39c3f008603e334af5f8d54584176db4478960366f5741b738be7c0803

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1b622da3d3cba731f5377a8ace458547fbdc80709dceed3b586d7fc9ec59b577
MD5 cf1ea26e07c98ca0e09a49006e192d4d
BLAKE2b-256 8b461b2c7a0feab8b9a7bac1c51152e5991ade21d7e12ef86a4a68bd38296925

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 130.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c49a68dbe8d7fe50b2bd9b2c983828fb46d9494db4ff67657098074ec7aa665f
MD5 a7a1dae55560418ee993297fe900a367
BLAKE2b-256 b754aef54dcb350b099f09d24fed9dfe21b8601d91a0a135f0ac5cd1486341d8

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 121.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 7a6109cf26de1622e09db68a21522bbabd54cb21b24950d4a52280586c8771ed
MD5 769c40618c5c55c4a0e31430253289fd
BLAKE2b-256 0b17fd97d3500a44953919264e01a9bc42be54a34b17dcbe75a8ebbe5d5abd9f

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6ac94aa0eb083a5f91d255092c557ac5876e1d67af824fc9228614bd2ad69397
MD5 b4d2195273598146935991e5477c0512
BLAKE2b-256 5523f830eee37bdb295e7f8c4d174ba5dee17ff6caeaf3ff49511ba7b8839ae6

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5a878172e3f78e4ef2f18e6fdd330b73a5a4d556f38afb773aa470c5ed812c89
MD5 5d979a65d66b6172d97a475a27c4841f
BLAKE2b-256 0f852d77980b94a14f9050505e638413481c15604ee54e753a79267c8935a0ab

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0f5b353a246f909086f302886f7b819a366f63c706bebab74fc3e7079153e5af
MD5 61f60b9254a0a8412a6710b75774d771
BLAKE2b-256 c249d8fcc794b1e9bf6e9d4c2603668adde0124a60f441a465a1fa1fe4c21650

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 51beb850e7f2af2c91010d29b30a5b149bb50cec27caba990b9b431766667f7f
MD5 f2987549a23d8689ff4c16d708fcceb9
BLAKE2b-256 2dd49a2e882cd109d228c0a300409896b527793d3be971d1e6194bbcdbaf7971

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page