Skip to main content

A python module desgined for RL logging, monitoring and experiments managing.

Project description

UtilsRL

UtilsRL is a reinforcement learning utility python package, which is designed for fast integration into other RL projects. Despite its lightweightness, it still provides a full set of functions needed for RL algorithms development.

Currently UtilsRL is maintained by researchers from LAMDA-RL group. Any bug report / feature request / improvement is appreciated.

Installation

You can install this package directly from pypi:

pip install UtilsRL

After installation, you may still need to configure some other dependencies based on your platform, such as PyTorch.

Features & Usage

See the documentation for details. We are still working on the docs, and the final formal version v0.5.0 is comming up soon once we finish the docs.

Here we list some highlight features of UtilsRL:

  • Extremely easy-to-use and research friendly argument parsing. UtilsRL.exp.argparse supports several handy features for research:
    • loading arguments from both yaml, json, python files and command line
    • nested argument parsing
  • Well-implemented torch modules for Reinforcement Learning
    • common network structures: MLP, CNN, RNN, Attention, Ensemble Blocks and etc
    • policy networks with various output distributions
    • normalizers implemented in nn.Module, benefiting saving/loading by taking advantage of state_dict
  • Powerful experiment loggers.
  • Super fast Prioritized Experience Replay (PER) buffer. By binding c++-implemented data structures, we boost the efficiency of PER up to 10 times

We provide two examples, namely training PPO on mujoco tasks and training Rainbow on atari tasks as illustrations for integrating UtilsRL into your workflow (see examples/)

Acknowledgements

We took inspiration for module design from tianshou and Polixir OfflineRL.

We also thank @YuRuiii and @momanto for their participation in code testing and performance benchmarking.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

UtilsRL-0.5.0b3.tar.gz (42.3 kB view details)

Uploaded Source

Built Distributions

UtilsRL-0.5.0b3-pp39-pypy39_pp73-win_amd64.whl (127.2 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.5.0b3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (167.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.0b3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (175.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.5.0b3-pp38-pypy38_pp73-win_amd64.whl (127.0 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.5.0b3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (169.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.0b3-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (175.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.5.0b3-pp37-pypy37_pp73-win_amd64.whl (127.0 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.5.0b3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (170.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.0b3-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (176.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.5.0b3-cp310-cp310-win_amd64.whl (127.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

UtilsRL-0.5.0b3-cp310-cp310-win32.whl (117.0 kB view details)

Uploaded CPython 3.10 Windows x86

UtilsRL-0.5.0b3-cp310-cp310-musllinux_1_1_x86_64.whl (689.7 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

UtilsRL-0.5.0b3-cp310-cp310-musllinux_1_1_i686.whl (750.5 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

UtilsRL-0.5.0b3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (174.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.0b3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (181.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

UtilsRL-0.5.0b3-cp39-cp39-win_amd64.whl (126.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

UtilsRL-0.5.0b3-cp39-cp39-win32.whl (117.2 kB view details)

Uploaded CPython 3.9 Windows x86

UtilsRL-0.5.0b3-cp39-cp39-musllinux_1_1_x86_64.whl (690.1 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

UtilsRL-0.5.0b3-cp39-cp39-musllinux_1_1_i686.whl (750.6 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

UtilsRL-0.5.0b3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (174.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.0b3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (182.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

UtilsRL-0.5.0b3-cp38-cp38-win_amd64.whl (127.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

UtilsRL-0.5.0b3-cp38-cp38-win32.whl (117.1 kB view details)

Uploaded CPython 3.8 Windows x86

UtilsRL-0.5.0b3-cp38-cp38-musllinux_1_1_x86_64.whl (689.6 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

UtilsRL-0.5.0b3-cp38-cp38-musllinux_1_1_i686.whl (750.1 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

UtilsRL-0.5.0b3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (174.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.0b3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (181.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

UtilsRL-0.5.0b3-cp37-cp37m-win_amd64.whl (127.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

UtilsRL-0.5.0b3-cp37-cp37m-win32.whl (117.8 kB view details)

Uploaded CPython 3.7m Windows x86

UtilsRL-0.5.0b3-cp37-cp37m-musllinux_1_1_x86_64.whl (692.9 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

UtilsRL-0.5.0b3-cp37-cp37m-musllinux_1_1_i686.whl (753.9 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

UtilsRL-0.5.0b3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (175.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.0b3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (185.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

File details

Details for the file UtilsRL-0.5.0b3.tar.gz.

File metadata

  • Download URL: UtilsRL-0.5.0b3.tar.gz
  • Upload date:
  • Size: 42.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.0b3.tar.gz
Algorithm Hash digest
SHA256 916cbc95c52c2a1e0428a4d975080fc23e13d923c0ac82db6e35a2d856630d5e
MD5 00706c09132e631c7f7a68aab1663395
BLAKE2b-256 30b02b93a2c5a5363af6f26ad7829bf0f9528cb8fccfb186e4d2a9f3571e2395

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b3-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b3-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 f870611f24231b9b13f53a31b393ab035af0588b815450a84ae72bc4e99c15f0
MD5 fd51cce9cd07594b6cc9454a8f4d9bc0
BLAKE2b-256 23135d03b8fe3203adf04bb6eb4d8f7b7013f94f38ee8ff2e0ce28c7906c1503

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 36a731d2f3aedd7988af943ecfa8798332c7880ac04780f9dce717e19b096da5
MD5 ef52dd155350eb49ee8303dfd5f6d1b7
BLAKE2b-256 65818e3cb1673b57a6519845367b72e4b044d9c0ff46b23c43c2bf26fe801f38

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 06530f63b8b5b7f0e21f3e635222f3f4679fafdb95148181c5f7a6aa5b9a023c
MD5 e2f34761b811474a3b3b2ae03e432c89
BLAKE2b-256 46dd7b04fbb1700aca6180143e0e30879538feeac13dfcb9b2ac8e1dd6c186b4

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b3-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b3-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 1a18c09db8d12ef54b6f07ca75adf0d7b8be85da260b5893553e7adff12ceaa2
MD5 a6cd0e1a8840dfa3313dc3acfb271ffb
BLAKE2b-256 afed87e4d9f28b4e3d7849530a94c95daed7ad89cfe8bb0b030546e2aaa94354

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 99a193422f38dfffe60bddf187a679c0677a08cd37c2e2e384c89216bc5ada5e
MD5 834257556c0a0dffb62e0955205d7f50
BLAKE2b-256 c346ad4162d018425ea5941e8e587f3be89d8ef230de7e15eed32a893bfaa7c7

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b3-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b3-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 58978b2d92984aa31199c5ab7caaaa7277a412a41618ac0cfa43a512f5f92b2e
MD5 0b7f5441ec246264b502ccdf338a692b
BLAKE2b-256 7897635f2f1efdc4f559c8e02008e0ea88fc2d3d31ef4450edb3d24f1d0b7e87

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b3-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b3-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 b0494e06ffe21ea69f5d630bc6a8d14d7065a357863d828e79a543d65c936ec9
MD5 25fd1bfcd89079e75ce10d3525ed1d60
BLAKE2b-256 00080f948169bf231b0fb6b6d0be278068446a251034e28d73a9ff5033c6fe8e

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e1aa06714c860a6c951f1426661a8b700e8b09e8d1a981324ca7db464a8df8e7
MD5 b455f445503f3efbd3eac4dad063ec6f
BLAKE2b-256 453baa2b065dc515267a76a4027653267fc585c976dbc1f4352ee3358eeb592b

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b3-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b3-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 adce7094f7bc019faa7fd11d985fdecbfa99df4dd7db1029ca3c6e616c1004e8
MD5 62bdc74c92fe05edfbe815db7cdafa6e
BLAKE2b-256 13fadac30f49450aae508be3375f25095b14fcd6bfbd5794caae9f1bbe24f7d0

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b3-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 24b6c3ae25b9bb8c5d4a94d83d60d0fd31978edc4fd01d9a653135f5a72a9cec
MD5 96642d731208a5c91401e2cbdbdb8f77
BLAKE2b-256 408f382b8fd8857841478379a3fcae2ee9a1edbed7800944877e18b3ab69838c

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b3-cp310-cp310-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.0b3-cp310-cp310-win32.whl
  • Upload date:
  • Size: 117.0 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.0b3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 f58dbed1984ca85c4d58caa9fe95275ba71bd5f6773a321c49f381ae62ebdbfb
MD5 f314c120488f5e1660d98df84908aaca
BLAKE2b-256 b6ba53d1400d95ef1c99671f317bf2393af1eecef0261be14732c58fb1d37f97

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7e8f81c7e9f6c03057de3338dcccb217d02ef45ccb4842cd156a9f01ebc3a660
MD5 5e9dab3ba011908a5e80dad7a2d0788f
BLAKE2b-256 1149358bfd6f3826f592868a5846bfe4059c5b036c5616156e8e3e948dce739d

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b3-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b3-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 248a3b08769def340fefcf8c8a78bafa132490a8e27a0654c4e92ef6e24eb102
MD5 bb6bc0ff51ba054bda580d994e220319
BLAKE2b-256 d88c28e14e06540f214208f833448f3af8d0ffb68f5c536447a56a906462800b

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f57ff7790155f40ece1401c4107e9cdebb0ae661ad4ae2cb066c706aeccd681a
MD5 78ada165befe944a5d04235c6bed57b1
BLAKE2b-256 5e7d16c9bc34940e487d1a480b8a3d562eb7ab54027a03024b4e2fd26ee5bdae

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cb230e4d00727a6febac2e81d787ff534954bc56c1593af7bdf0c2bcda72eebb
MD5 0626ef57bdef32e183fc7a00bc732287
BLAKE2b-256 e8571f77fd21f7527be5d900db7f3190cad1c926ef22b01772b6e9349a350ee8

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.0b3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 126.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.0b3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 985bde3497feea7e70a5a4700c582170b4b58a24accfdd5c77b1d1a4d36f42ee
MD5 543ab296a780d1a04b3d85091e9c2b6c
BLAKE2b-256 0c912adf371b1b24844e3b70534794c8dea91a9ecc817f70d0fb0343de5a215f

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b3-cp39-cp39-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.0b3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 117.2 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.0b3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 6a320e7aa9b26dbf4dd7ef73cb6feffc5cd3436448040d96fde2a32da2cb40d2
MD5 bdfc82682c498eb0076da08ef163fa65
BLAKE2b-256 799c7d885b936d0da49c62690d80e9103a9724c0babf16672177e82ee2215692

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b3-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b3-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4ce1922c9691e4bdac551f713a2247d77f2a5653d6565972c40e8892c73357a1
MD5 c389c4013511d549bd7f7edf241a3063
BLAKE2b-256 810d838fddfacd955f42e27d00a5ac7019aa859fba5fee5d247edd90312f8b2e

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b3-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b3-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 16a2c15fadad4773fc571c50f0a90efdda3ca51132f7b9b641d357868cd699bc
MD5 a37d90c8a6ab38b7e70704a5e25affcc
BLAKE2b-256 f8287488e477ec54f09313303fb10be2b9cd537d8e3d5f8162d7b9546e01289b

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 65d78e8b7315a8655787aa165541ddf53f2af41c2046aa660455570ff7fc272f
MD5 8ff442dfe1fa1c29f2b0cca22d1caded
BLAKE2b-256 32199d9852a9c18a564d6a74c1823bfccc5b582ec3b7d273aeafdf851adc518c

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a0f21b671d3a872efd4d2aab40cafcff742e3eab550e013aa5266b4b9652ed04
MD5 a02a7e2ecccbd529aba438f6b12985e7
BLAKE2b-256 b6dffb805b6dc3b41d07b3f15a4d436c6d5be7cab6f2b0b6bb50fd82797ec325

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.0b3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 127.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.0b3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a090a14d40ae2d813775d422c97292a5355bd0c8f729079990840cc2b61d0518
MD5 b2885948f85589f89c564d5a1b328f51
BLAKE2b-256 d7e646483dc0a5cd6ff335c4d23823af5e6a34b50c51ceee1f3ebecbb62bf1e9

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b3-cp38-cp38-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.0b3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 117.1 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.0b3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 fddb4acae903c9c5d94ec723fc20a41ea99d1ab8c4d82c5d9904d3ae997abf24
MD5 7ecd5447fbf9529417dfa47f8a87e7ff
BLAKE2b-256 d7864c34ab5dd9849732726053e7312452a64b5ca2679e07bb417fc7f1fa313c

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b3-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b3-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9ff5086b7b0b38f9b459414754b1a59af51a199fc5219db3fc974f3189dd4c99
MD5 1df07d6e41acfb5559200fdd4497b7d1
BLAKE2b-256 08fe6a2d6338c657efaa5f731feef5ae4e9f7123e5b4c8d7fb53ec685502f312

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b3-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b3-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 9c2723a5e3e87211fbfd44477f2cc73df5379e29bbb4666f3247922c9e4393ee
MD5 467d21964c6e11e450226031cbd5da22
BLAKE2b-256 5e161252024dd93121e48394b76cff367819d4654faa55fc9c103a21e0f4dcd6

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b8da8774d484dae55c6906cbd06f49a1a074f3844886289bacc9e4b32a91c54d
MD5 275a9ca4c484ca22a6867f2456a5ac7c
BLAKE2b-256 7067bd37bacb6d3f8cb6f29145f38f0263b4afa494155a63092c7b33a5f408b0

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 81a6bfd1bb88e31e500473bd19a5bcc2ad93fe4fa88c5b7d69d0f0c619d2866b
MD5 52038c71a6fb2d7b0c88d989e0db9257
BLAKE2b-256 1b7f5a73fdf03ac343efeb0d0bcc29bf424af90e8d0d47955349de18b7afb220

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.0b3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 127.8 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.0b3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 685efa658c41f0e887d077200c88d3449ee7aeafcb1c14f196ae3d814f4fb898
MD5 b91942adf5dda33fc85777ddb6770a7c
BLAKE2b-256 0bf53549d071620fdd1f95ebb03807444d8c7153a2a54782b8f3bbe3270e8299

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b3-cp37-cp37m-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.0b3-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 117.8 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.0b3-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 c793cfaf664a5d0e4f459f47431025a5c4e04b4430cce6f91e378336ea6fa2c6
MD5 e871a786b9b197e235b6b95d227b4bac
BLAKE2b-256 0cae1e2e356d61ab2faad15ad6492e14580ea0b78cdc2f86ab6ec044452d4f18

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b3-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b3-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d9e8a063655538830b496e6ca24dd58fcfed6c4638c45bc40b932bf2e80d4cd8
MD5 090b1fe7cd7f89505d5bc4c63c100023
BLAKE2b-256 69b0ba8ef863d305212e821c9f982c604d84c9a0a0c0700fb2e6f9c1c547e15e

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b3-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b3-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 149cc42053fe0caa29e03c8556e3ff5ae9075a99553e16eacfeed2dd62600215
MD5 b3b52a81bf16afdad97ecc8a0aa4df86
BLAKE2b-256 a92f833899f28fb312b4857f3c635df872dc055eb765dc339e5b6d89d9c81ed6

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7dfd10d5c482b3c19fa6ff3e51e264a80f968ab0a5db203a20d38a859291b217
MD5 563c358c7b21524addb46baaa0e43bce
BLAKE2b-256 e19818324de30758b32f89318686520858ee5387b7581ed265f7c131dadbd922

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d00847e92538cf9a1cf164be8fac70f0fab30f3dd3fa20b46d7668d86cd8a6a6
MD5 68ec02d4726a633c121f14f6fc9be778
BLAKE2b-256 71386b9a4f128a4960f48feaca9e65c022fe9dafd2bbb03fdf9099d48b44ad93

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page