Skip to main content

A python module desgined for RL logging, monitoring and experiments managing.

Project description

UtilsRL

UtilsRL is a reinforcement learning utility python package, which is designed for fast integration into other RL projects. Despite its lightweightness, it still provides a full set of functions needed for RL algorithms development.

Currently UtilsRL is maintained by researchers from LAMDA-RL group. Any bug report / feature request / improvement is appreciated.

Installation

You can install this package directly from pypi:

pip install UtilsRL

After installation, you may still need to configure some other dependencies based on your platform, such as PyTorch.

Features & Usage

We are still working on the docs, and the docs will be published as soon as possible.

Here we list some highlight features of UtilsRL:

  • Extremely easy-to-use and research friendly argument parsing. UtilsRL.exp.argparse supports several handy features for research:
    • loading arguments from both yaml, json, python files and command line
    • nested argument parsing
  • Well-implemented torch modules for Reinforcement Learning
    • common network structures: MLP, CNN, RNN, Attention, Ensemble Blocks and etc
    • policy networks with various output distributions
    • normalizers implemented in nn.Module, benefiting saving/loading by taking advantage of state_dict
  • Powerful experiment loggers.
  • Super fast Prioritized Experience Replay (PER) buffer. By binding c++-implemented data structures, we boost the efficiency of PER up to 10 times

We provide two examples, namely training PPO on mujoco tasks and training Rainbow on atari tasks as illustrations for integrating UtilsRL into your workflow (see examples/)

Acknowledgements

We took inspiration for module design from tianshou and Polixir OfflineRL.

We also thank @YuRuiii and @momanto for their participation in code testing and performance benchmarking.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

UtilsRL-0.5.1.tar.gz (45.0 kB view details)

Uploaded Source

Built Distributions

UtilsRL-0.5.1-pp39-pypy39_pp73-win_amd64.whl (130.3 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.5.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (170.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (178.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.5.1-pp38-pypy38_pp73-win_amd64.whl (130.2 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.5.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (172.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (178.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.5.1-pp37-pypy37_pp73-win_amd64.whl (130.2 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.5.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (173.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (179.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.5.1-cp310-cp310-win_amd64.whl (131.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

UtilsRL-0.5.1-cp310-cp310-win32.whl (120.2 kB view details)

Uploaded CPython 3.10 Windows x86

UtilsRL-0.5.1-cp310-cp310-musllinux_1_1_x86_64.whl (692.8 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

UtilsRL-0.5.1-cp310-cp310-musllinux_1_1_i686.whl (753.6 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

UtilsRL-0.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (177.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (185.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

UtilsRL-0.5.1-cp39-cp39-win_amd64.whl (130.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

UtilsRL-0.5.1-cp39-cp39-win32.whl (120.4 kB view details)

Uploaded CPython 3.9 Windows x86

UtilsRL-0.5.1-cp39-cp39-musllinux_1_1_x86_64.whl (693.2 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

UtilsRL-0.5.1-cp39-cp39-musllinux_1_1_i686.whl (753.7 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

UtilsRL-0.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (177.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (185.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

UtilsRL-0.5.1-cp38-cp38-win_amd64.whl (130.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

UtilsRL-0.5.1-cp38-cp38-win32.whl (120.2 kB view details)

Uploaded CPython 3.8 Windows x86

UtilsRL-0.5.1-cp38-cp38-musllinux_1_1_x86_64.whl (692.7 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

UtilsRL-0.5.1-cp38-cp38-musllinux_1_1_i686.whl (753.2 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

UtilsRL-0.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (177.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (184.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

UtilsRL-0.5.1-cp37-cp37m-win_amd64.whl (130.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

UtilsRL-0.5.1-cp37-cp37m-win32.whl (121.1 kB view details)

Uploaded CPython 3.7m Windows x86

UtilsRL-0.5.1-cp37-cp37m-musllinux_1_1_x86_64.whl (696.0 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

UtilsRL-0.5.1-cp37-cp37m-musllinux_1_1_i686.whl (757.0 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

UtilsRL-0.5.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (178.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (188.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

File details

Details for the file UtilsRL-0.5.1.tar.gz.

File metadata

  • Download URL: UtilsRL-0.5.1.tar.gz
  • Upload date:
  • Size: 45.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.1.tar.gz
Algorithm Hash digest
SHA256 0412eec980f6cf3623e802a7c178369a83df444aecb320816606f5d2759fd579
MD5 081a263bddbb9938c87ee45e90d72d89
BLAKE2b-256 fee97311c63b355f5bf4332f5b9ef421e53cb2b933b9c95f33abe4efe4988804

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 58539b166ed77b0448d2f0acda39df17be0f05b0d506dbcedf9d0941fc64dd02
MD5 daff66f0e4f8f913bdc5da44fd5b5a06
BLAKE2b-256 1d49fa5161554b72620b77e05a5c0167aebe531827c15689dc4c0a2404913502

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1ec75b865436aa7ac4ab332850fce247a5fce24937d9dc10153e4c82e6efa14d
MD5 292d53a72c884785c883b07e3edf7285
BLAKE2b-256 475c674c6fefdc03c0515fbc8a1c72420e24bc6d3455c7409ad438ea4355b278

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 525f2270cf7ad337bf5ebea889821c87fb71ee408a75751db4a26e225a58f479
MD5 523c234e97c16eee2de0ea87a211dab7
BLAKE2b-256 8115924b87df4cebf0b63ed03229735aee5544d2c25af4a21e5928b533533186

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 e8c61f9aefbcb4ad0384aa01efe68f167febff682aed5b0cddf7221835e2ef3c
MD5 8fcef8cf436bc8ae9cf2a84f2b25d7c3
BLAKE2b-256 c3e295d9dbf3264f95f90600b85dd7506cd7f5be83b06e4f36ae6f798ad099a2

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2eca75b6de49122d292c1fd562fe7ef0ef3b836c57729a3fbcd95ac980c2d407
MD5 82cfda25aaeb5d9d4e3f38f099377cad
BLAKE2b-256 ba619a287d1f755f3eb7dd5b6b0150c08353cbcce01d25595907d1e95ac4eab7

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0318acc20d31392b04762ae9c7f86d580aed0114053250e6453c8abed1624e80
MD5 dbcda9e064943852072da439cf07531c
BLAKE2b-256 ac20317ae1757fb5312693f5db311a79b5e460136153073163a6b593e2782879

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.1-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.1-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d2ee4a37f6331ae5b99e952bc80ce529c713101e3bdde4ef8a716dca425a1b18
MD5 a42bb47b3b14f225d7deb0cd5232a786
BLAKE2b-256 b50faf2de95f9cefcc976b227ec278c9d956d108634708406b9d2cffb7f783ed

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e614ce162f44bc81ef556b8f3f055480079fdce7faac3443b3409d175a3a0376
MD5 6901ec3a4235432f7e3b84475f71b316
BLAKE2b-256 8220ef6247d5bfc39a8ca1fa64b72ddf92a01b1f0106de955572d229d2d9ac04

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f5f35cb862de62e40db4158daa7d5efd40cdd43ea97d0843840510ea2d294d0f
MD5 0171275fbe7898399233bb4483809f75
BLAKE2b-256 ff23477d22c4232af961ca3cb773676df4d27e391d0b585c598928b74b333ae0

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 131.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 063f19cc4010c884bdd0fa120585a497fe1f14bc88803579d4d9d64f3a2ddc0c
MD5 f8d37023e9c1740d1d03c0ec7e9bbf78
BLAKE2b-256 7ad23d6e3551210567ce4226f70e2bcdacdca0a910af5010dc255f1e19c03c20

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 120.2 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 30684b07c0e96e6e93d0050a369fffdbb6ccd0220ab027379f3f5500f7b0a7eb
MD5 ba990ad0989bf4d01faa3494d0a14fba
BLAKE2b-256 96f39210131970cf748c27431ccf7d205cd04d7eba3973ed721ae0aa013d1ddd

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c4120ea060ad2fbcb0f32b4ba51f99b3e7041908f9479456ab6a388a5c047929
MD5 cc0958101e40bd99a3e48a2cc447975c
BLAKE2b-256 06c853f88c3d8146d48a3fe2ac18cd9214bebf3572acff7777300d2a24dd587e

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.1-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.1-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5cd6c9e4e2107ec6bd649d36776521e16963b0c4f514ed28e30d4adf8327c308
MD5 ca2f9729bc2128f2622c44158238f543
BLAKE2b-256 3e18bf5bfd99052dd01e4e2ef6722da706a6289040e2785283ec2be88981670f

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c09d863e1fc0b51994387fb7ada2bf899d63c374f504251a523144e73b4e6913
MD5 b1ff7822283831ca04f9bf8166c6cea3
BLAKE2b-256 68614151e8a4c7d4416b7ab28a167751e44542cb434aeecd1761104eb26aee73

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 70fb786fc6ade1bb71c483d7ce1e965f5caae755b8bf81676576b11de9c1dfda
MD5 bd03ae38facb315648c5d9d4f053e21a
BLAKE2b-256 b01f01e494822ca3d6f84cb18df2689903759389ddacd35c47ff397f32a8bb19

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 130.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 96dfb50c81268a421c0ab346618c2f9b2921bb064b5d62461d3c7084397ae746
MD5 62d4e98a7a8fd3740ddd7b5ab4817a08
BLAKE2b-256 e22984c5875d88c64a5485116f0bfaae4ca0237a0190fe467364dcbc4fe5c4fb

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 120.4 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 9358756a9a6619189cd57a6f245f158621ee5c893b8d7a503ebbcb6bb95c9ce5
MD5 32ef0fbc655037ab672675a5ce8ee974
BLAKE2b-256 d513715442e0c6f2518231469a0f28d6ba70fdc1d47e47bcde127ad7e8a7e434

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a33f81b5f1f5a5b0dee0b8f5b811635d21dc2e52f609b05cc3caa69836003de3
MD5 c3633e6cf2f9d4007ad8a7825c13adbc
BLAKE2b-256 aa5a759993fe8c7a7ca5ec9aee556655746ce130e3c0c84c93e6a4ff6dbe2bb1

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.1-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.1-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 fa9d38b3a0fc6c097c64a99247bc3749b02b0697d7b62ac864e93f0185cb944c
MD5 40e01e93127697c185ebf6046646c3a8
BLAKE2b-256 0045624623706e2c49d895fd16e937fcc4878401c8ad0a9e5369b569ac5b9b68

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 03dfcdc6fd839d585bbcaa5c8e94b8f6c44df824321414c8688892c0047e55fc
MD5 384a52aa022161a633f480b6a60bfa00
BLAKE2b-256 e2cc1395897dffe64453215ba4e60112f9fc24c2d49a26f38bf0868212338304

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 88929037365004280794dd6aea72a07286c3aec44693964b9af68d41db460fbd
MD5 5dbb9068fe90ceb39258111c26d8b6f7
BLAKE2b-256 1c1e8a45d74b5d9078fdec6dcff18ce16d2943aede59ff3fe3588413b22e427a

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 130.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 09eca0a6a2154ac65901b96c6d0496ff0e5b4ebcf7226c9dcf6c6456bd3accc3
MD5 b40c86b32820171311b5cef19080be5a
BLAKE2b-256 66c82193d0b4f72e56f96fb9d7da41e0b255a06a4cac070ab9ac3e198237811d

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 120.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 0af8b88052f4a6ebb0cf6cf8f8868bb5ed3405a4c07ed8097ba10a29131371d6
MD5 77cc8f87120c107222605a8acb07dd97
BLAKE2b-256 4a77d42b163b74be366629db72b224c146c6afc76ad9b00750dad8343ce9f50f

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b04b6964584c7dacd48b09762d3c9d4e8456b466e68bb82c372b485f8e1cb5da
MD5 3376b14c377dc6ffc9a3016a63ca08f3
BLAKE2b-256 123c629ec3c0bc3dd899c4f58da7bfd776eceb6ef0d57aeedcf4e803578c1faa

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.1-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.1-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c8cd33da94098156f432b193e2f15e0503b9fe69c2334dc7e754e04a314c0f15
MD5 d1293ea3ac421320964e93ef4d4e12fb
BLAKE2b-256 6999eac8b138f0baf6a35ff3b07ce900ca864594a6bcfe251f330281865922bb

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6686dd8e05f33684a0aba77a7da9ef7252378217a8524aa4d4210513a98d61df
MD5 19c44b872af0620c2165c43d7564f76f
BLAKE2b-256 6ac5f0c765d9375ee1cf3549cf66c11baaea61430a1c430561670615a3486b21

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b3cd8f45d7fa534ac717e3a705a0274780e423272e772ece3725813e7b5d22d7
MD5 0767b23fc6b6522f6e387b438bbd2b56
BLAKE2b-256 9da5f7f4a3abf3cab98cf43aa3c621268a75f28f60fd00312c0ad70d9bb7fb9b

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 130.8 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 37aefde084a903124c72afcf03459f9f55d3e83a598dfbb61b6bcc010082381e
MD5 e0d5cb4323638fb1c0f8c89e17f8db14
BLAKE2b-256 e2e44a9e8523704143514297f9c2fd3b6f4dc8cd197de7a625d3b7ff28d41d85

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 121.1 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 29f53ff16e60e3ef746a5113c6a90813db4c2befc4fdb4c85ba6204a8e28814f
MD5 5a44a6e9a18291d8304c522925e312af
BLAKE2b-256 1178202a367ce9be7769b1c6802930a36636502c20283be00b2b798237365577

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8300fad1c7d0e9d00dff8d31d6a70e7173ff34d7c7a967ec51d8ac7ebbe4664e
MD5 d74e9caaf960290494d966c9ccd2a810
BLAKE2b-256 929cc703be559ed1f0cf01066cfb69b46eb5926702a7def3b9a1c42080571852

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.1-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.1-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 71d49af6324cecdb54996d43127a954275bfe89783d528a95789b63d3dbb1497
MD5 1df0792a97008b93e4734975aa91f98b
BLAKE2b-256 12c07d18d18146d8c7b8d8db48531b00ce9a71a22a42e89aa7fa000673266075

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0401e6c46b811c81afedbbcd52e154fcefc2230ffeadbab0c697dbd5c30634a8
MD5 9c509ea81c1ba0c9e3dbaaf6578a5233
BLAKE2b-256 ee7722677ce1f173a2d75685e74572f05b8c904f0b21071871012e20673d9584

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fdbaa963ad37dfb74a8bcfe9baf3ea6d4a3b79058badba17a793405f7d7e339b
MD5 16879e9ec7528b98381ab37afa7fb9b2
BLAKE2b-256 dec3de9045edbdbbf7f037b87feca1c8feaa89b8f985b8b55dfc08f75254452c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page