Skip to main content

A python module desgined for RL logging, monitoring and experiments managing.

Project description

UtilsRL

UtilsRL is a reinforcement learning utility python package, which is designed for fast integration into other RL projects. Despite its lightweightness, it still provides a full set of functions needed for RL algorithms development.

Currently UtilsRL is maintained by researchers from LAMDA-RL group. Any bug report / feature request / improvement is appreciated.

Installation

You can install this package directly from pypi:

pip install UtilsRL

After installation, you may still need to configure some other dependencies based on your platform, such as PyTorch.

Features & Usage

We are still working on the docs, and the docs will be published as soon as possible.

Here we list some highlight features of UtilsRL:

  • Extremely easy-to-use and research friendly argument parsing. UtilsRL.exp.argparse supports several handy features for research:
    • loading arguments from both yaml, json, python files and command line
    • nested argument parsing
  • Well-implemented torch modules for Reinforcement Learning
    • common network structures: MLP, CNN, RNN, Attention, Ensemble Blocks and etc
    • policy networks with various output distributions
    • normalizers implemented in nn.Module, benefiting saving/loading by taking advantage of state_dict
  • Powerful experiment loggers.
  • Super fast Prioritized Experience Replay (PER) buffer. By binding c++-implemented data structures, we boost the efficiency of PER up to 10 times

We provide two examples, namely training PPO on mujoco tasks and training Rainbow on atari tasks as illustrations for integrating UtilsRL into your workflow (see examples/)

Acknowledgements

We took inspiration for module design from tianshou and Polixir OfflineRL.

We also thank @YuRuiii and @momanto for their participation in code testing and performance benchmarking.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

UtilsRL-0.5.2.tar.gz (45.8 kB view details)

Uploaded Source

Built Distributions

UtilsRL-0.5.2-pp39-pypy39_pp73-win_amd64.whl (131.2 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.5.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (171.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (179.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.5.2-pp38-pypy38_pp73-win_amd64.whl (131.2 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.5.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (173.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (179.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.5.2-pp37-pypy37_pp73-win_amd64.whl (131.1 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.5.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (174.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.2-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (180.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.5.2-cp310-cp310-win_amd64.whl (131.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

UtilsRL-0.5.2-cp310-cp310-win32.whl (121.1 kB view details)

Uploaded CPython 3.10 Windows x86

UtilsRL-0.5.2-cp310-cp310-musllinux_1_1_x86_64.whl (693.7 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

UtilsRL-0.5.2-cp310-cp310-musllinux_1_1_i686.whl (754.5 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

UtilsRL-0.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (178.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (185.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

UtilsRL-0.5.2-cp39-cp39-win_amd64.whl (131.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

UtilsRL-0.5.2-cp39-cp39-win32.whl (121.3 kB view details)

Uploaded CPython 3.9 Windows x86

UtilsRL-0.5.2-cp39-cp39-musllinux_1_1_x86_64.whl (694.1 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

UtilsRL-0.5.2-cp39-cp39-musllinux_1_1_i686.whl (754.6 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

UtilsRL-0.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (178.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (186.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

UtilsRL-0.5.2-cp38-cp38-win_amd64.whl (131.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

UtilsRL-0.5.2-cp38-cp38-win32.whl (121.2 kB view details)

Uploaded CPython 3.8 Windows x86

UtilsRL-0.5.2-cp38-cp38-musllinux_1_1_x86_64.whl (693.6 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

UtilsRL-0.5.2-cp38-cp38-musllinux_1_1_i686.whl (754.1 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

UtilsRL-0.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (178.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (185.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

UtilsRL-0.5.2-cp37-cp37m-win_amd64.whl (131.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

UtilsRL-0.5.2-cp37-cp37m-win32.whl (122.0 kB view details)

Uploaded CPython 3.7m Windows x86

UtilsRL-0.5.2-cp37-cp37m-musllinux_1_1_x86_64.whl (696.9 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

UtilsRL-0.5.2-cp37-cp37m-musllinux_1_1_i686.whl (758.0 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

UtilsRL-0.5.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (179.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (189.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

File details

Details for the file UtilsRL-0.5.2.tar.gz.

File metadata

  • Download URL: UtilsRL-0.5.2.tar.gz
  • Upload date:
  • Size: 45.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.2.tar.gz
Algorithm Hash digest
SHA256 6118d6a610f0e970099653dbe53a98041ceae910d4d5de0a275622beec221881
MD5 3fb07bd91b77df27243af64e98e4b1af
BLAKE2b-256 cf077c5c7c5a8d9698d6d589924a215b878f9cfc50985c5620179eb28a4cd5f3

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.2-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.2-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 5b4e32d74d3eaa5d84ef36ac5bd54c87bfa52449a669d33ab43d5203ce158256
MD5 f892473766b330894932fb771224c306
BLAKE2b-256 1b3ca0e9fb4614396705849cf1283177303dee898d3a540332eec3935b5fb657

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 19284bb37df2d9f4b1d628b773772668edc29c0af485bc5c0eaacdf25058408d
MD5 e3ecb8db51b1c001b5ce40d0cf0818fe
BLAKE2b-256 59f401604c7461289da75a1206b1e9a52a8ab0c3e4c5a84ab0b63e37a1b39a00

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bb0911a8d368b7822c18981eaeb0bdea79d8834f09daf4acc6dfeefc68105a07
MD5 88e717349db08a62ed5f2574a78e0f9b
BLAKE2b-256 b06ff33a49e6a5e25f1aa4c5f8bbff9c6436d32073561199e6211cb3a49fa415

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.2-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.2-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 c639b58df03c922ad3e0449a7f41a1fbeb6cc1ecf1312ea6be4becc8021c88df
MD5 8e08d2138138773d776933b2a39368a0
BLAKE2b-256 928c7d615a2440bc372d61067e79ad7458db5ab4ef22508eb0d763fd6c2b166c

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7d1920c1604fb32eeecec5b12a789e9777c18020f9bc9f9d7d53be1c27005951
MD5 edb7264359d62ac1edfa73c1db0deb1c
BLAKE2b-256 7b7c5d8294cdb83400851c9f0df18213871cd4111a386bd5c3a505c1dc0b108c

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bed33d1a1308659916615daa281aaba766fd8319a4fa31a8197978e342d58df9
MD5 02b26d709666e23c9aeaa7ed450f764c
BLAKE2b-256 c971318ed2f520cb5a6ffd23cd17cbc0d38be7ca5de2b5c103cd583278100f41

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.2-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.2-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 8d9b02d5c5f00f2e7fc60f6e631e59ec25ce01534709a2ca0276f4f31d676a41
MD5 70c82a8243965033d2d72d69512b4b61
BLAKE2b-256 3c9da90168665440f7aa9d31c8945e26796fc552bb0b5e87b186e8008bf06661

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 573cd97e49bb1eb47f1abc8c814a21b2081452f8d7c68d954cf9fbc60ddbde5a
MD5 65360fe33c775a5b9beb172a5ac04cad
BLAKE2b-256 ed2a22b7a7cc99f94aea390aa22c065dcb8b70de607a3724a7061d9f805ed96e

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.2-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.2-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2ebcb010ecf7312e1a47b96f24b923ed90b227d4b4121591c99306a1fe7c7776
MD5 3d0efda407e62399de425b018db6ffeb
BLAKE2b-256 6079b1961679a9813255195374ed7004a5b72f2f706bbe417a6f2aaee0e87ee8

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 131.9 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a5532aa3f1289e2bf16968d0236f4428faa531cbbd2c711bc66e900cccec5b3e
MD5 3e8c29f6c9c436b9b08e42253ccb7dbf
BLAKE2b-256 0ddd3e044479af50c74c49980647a95c6e439e8460b42162b0bde591c8f1fc74

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 121.1 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 2f218a21b34e943da881177f28721b17710deb900679c294e734af6232855b8a
MD5 eb211d57a61d565a7c0648e04117addf
BLAKE2b-256 f125d9088e99d70638667ec59092b55262622a8a216fc9bed872285017110b1c

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 378959fe8bac83b3d6c51dc080243f2edb7691ac76fa445d45c40339d1d9fc3c
MD5 073cc5c5d7bfba94362af8a2f33dc5c4
BLAKE2b-256 fb4daa19c9c7ab7a2e88f1803d6ead4233484c1a42e44fa549ec621214e95ddc

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.2-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.2-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e86001b1b4ca5f5f5d1e48df4bd10b16e13d0d3e47af3671fc30b177260411e2
MD5 e8d23dad5b47003cf7bfd4c63ab3d43b
BLAKE2b-256 de3aaa991230e580df168f4787065d832eba83c2eaa017b68e8e6268d908c48c

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 61ba4befe1cbfeca04af502a376aa3a390094c1ab444c187318382bb5c470d33
MD5 8d78a939782283ad08ac26df76554cad
BLAKE2b-256 d73b1c4c03e0b8ea116632f4291684b29861ac736c008b8b6b7b8b6600a3f42e

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fb576c7815faca711bd246a6ed6a1221afa96fd6621dc2a13e3e7c5dfa609650
MD5 a987fa4a6eaebbfb7ff6402b87b9b479
BLAKE2b-256 1fe5973f3cb2416ec0d9144fa48cff5bd9c2987b4b25648fb888e3ca6a043596

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 131.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e776f775426bedfdc043e2bbdafdd662d1ac1676e586b8b73a4a59da9a6b4635
MD5 8a549a7105b84fdec994807f4045dc99
BLAKE2b-256 3471874b7561f8212e744c8a0710f83d23b8ef304163ed75bd5a1501bf7ad0c6

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 121.3 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 09cfc3ffb95c535d540e1ad0ff22b20688b96a4bc40dc16beb7a9ab2e0325897
MD5 ba79fd9b66b9e64e04ff782c9c489dac
BLAKE2b-256 c0b29c451f10b0c53b7d6f82bb8b25ae0b8772da6188e8df287d3980e3a448fe

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a60f39ec78fee76200214f74d4965a0f377c207d8cb9f6a528ab41e6066a7076
MD5 b978e8ab24b86aad31af3fd8a46ed651
BLAKE2b-256 714dedd4a6564f49c3bb5497f39c0963971628ac1a6bf05b1417741589fb4853

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.2-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.2-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 dbaea910fc5bac0a56b303742eda6baa497760bb726b20c8ccd904ea43e99b14
MD5 5356df3fb11fd2269a2571a45c0511ed
BLAKE2b-256 8bb980e8b568f9270c9202090d9b39190ffc024081a0238462ce2260957c9e94

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2a324cdbec55b6b6adffb7aad88304503964c5c2ee112546235dd3555e29a23d
MD5 079a6fb60c92fae4eb702682a88b2955
BLAKE2b-256 d8a7569c9a89c37042332952905a63a32c11c2fab4708c64ab15d2a500a4e96e

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d6e49fde87e4efde00fb1fcdba4ab074b4e1d0177404bf5976622402a7f14b6c
MD5 17d1a8a2179c8dc4f60b0fd8f1689202
BLAKE2b-256 e76d512c817182fb2d8ce32112428602ecead9516c8067e480cb391091a736bf

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 131.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d48ec9d68ed793072fb1c4e6ef74d2c0c55a1640d817478fe42b05cf42d6a526
MD5 2e950cf25f489a2db8a3c086c568c87f
BLAKE2b-256 f40d7f75107ab777e62ce48cd289b728497da13ff096a61b7007ee579727c9d0

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 121.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 70d3ecc067f90be6e2fb1048599d48ea96920164e4850754d889d2589241b483
MD5 cefc4de5b707099a4941f8cc1b9f2fe5
BLAKE2b-256 e2a0ef2dab0a10351b39185e9d3e33ae3666468fb419ad3c87ba1e614276f019

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.2-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.2-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 89290206e47ea8dff3b2066aa0be5680026ab7e8f8821b40b0a7279316929733
MD5 e5e492c300f1ed32267f00dbf5496d65
BLAKE2b-256 08406a98bb8c72181f58b8f1c1f55426fd92846293b1254e0f290dd7c8651fef

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.2-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.2-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 adee4ee24e012a07f3ae6aa1131c92a30f081a9e7a03d8ef93b8eef8baacb17e
MD5 291e3d8d02abb73bf2da90e3480e24d1
BLAKE2b-256 e38c00308833e9464e5fdf4620d85e5200a4a8d9acd4598612ddf38b79eb2db9

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d817911612ba13d346fd14833bd80ad2f1a03c7017dea2b0eb4484ea7543a01e
MD5 019582bbd82419ae329ef2d60640cc99
BLAKE2b-256 f9730c9300985f3a4368244ae5132ad8839d354c307be8544e0fd1cedf331f1c

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5e2cd9a096c6847060272973cfbd5c66b19f1fe0c3daac1abe17e9c32323d876
MD5 9045a30f79815bfdca0b2bf257f5bb8c
BLAKE2b-256 702e03fc5cb24c0cce8d1e8751fcec3eb278fc921269362477c0b3a1f837ab16

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 131.8 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4a207e9d7486b78e89a02ab14baa7d443c96aa0aed646e72c247611b5b7aacb9
MD5 e433f5f1902d2cdab58c99c4e55baf6a
BLAKE2b-256 0b36acf7f581ccdd3a645ca6e549bbfe9df1388d69536ad662e094b7bef6a54d

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 122.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 f674bffcb69dc91ff63de719343ce01ddf7b496075384a349eb7c12da3f8a0c1
MD5 80fb93f579fff52999a6981a9c5fc36c
BLAKE2b-256 0307571c60a3f7f8f9148639e36641e571af859f9dac5d4315fb50e8c7b4d6c1

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.2-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.2-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 79ffa80afd902afe6536155c8b422c0b087a6cae67763d5bbe139336d000b78f
MD5 db190c6fffae480e6f2d1abee1cecd7b
BLAKE2b-256 d14c60daf5d5bdf2acefadc6b0b9aa93bc47cfd6e453b54d60c6064cf41a99a0

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.2-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.2-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f6d3c363cc05db163823e9c53f2859f073045ee1f3320c4ff8579eeffc2fbc78
MD5 9cb83690c0eaf3d5a4cc0bda41af8101
BLAKE2b-256 244908aa38e0dcd92464e3d30ba549ef87ab56ae7683664dd46e7e02328e0c11

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9f3353c4574aad2848e6160d39147e05d4e44c3c9adf10af0c7ea57fdb0644a7
MD5 c72a967f6bf4982d417d610fb727e3ca
BLAKE2b-256 1a5e231165b9ee3178e291cbd7f32efb9cb4659fff67c965b8ce40574fe15a9e

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8beb026935ada95d59a670eab844dc6959435509ecee893e2fc4a273e15ffbb2
MD5 d7eb1fb3fafba3073533a6e145fd82d2
BLAKE2b-256 665c08b3126f44c4918e04f8b81158d2e86784291c9f7589877593c5b8647aad

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page