Skip to main content

A python module desgined for RL logging, monitoring and experiments managing.

Project description

UtilsRL

UtilsRL is a reinforcement learning utility python package, which is designed for fast integration into other RL projects. Despite its lightweightness, it still provides a full set of functions needed for RL algorithms development.

Currently UtilsRL is maintained by researchers from LAMDA-RL group. Any bug report / feature request / improvement is appreciated.

Installation

You can install this package directly from pypi:

pip install UtilsRL

After installation, you may still need to configure some other dependencies based on your platform, such as PyTorch.

Features & Usage

We are still working on the docs, and the docs will be published as soon as possible.

Here we list some highlight features of UtilsRL:

  • Extremely easy-to-use and research friendly argument parsing. UtilsRL.exp.argparse supports several handy features for research:
    • loading arguments from both yaml, json, python files and command line
    • nested argument parsing
  • Well-implemented torch modules for Reinforcement Learning
    • common network structures: MLP, CNN, RNN, Attention, Ensemble Blocks and etc
    • policy networks with various output distributions
    • normalizers implemented in nn.Module, benefiting saving/loading by taking advantage of state_dict
  • Powerful experiment loggers.
  • Super fast Prioritized Experience Replay (PER) buffer. By binding c++-implemented data structures, we boost the efficiency of PER up to 10 times

We provide two examples, namely training PPO on mujoco tasks and training Rainbow on atari tasks as illustrations for integrating UtilsRL into your workflow (see examples/)

Acknowledgements

We took inspiration for module design from tianshou and Polixir OfflineRL.

We also thank @YuRuiii and @momanto for their participation in code testing and performance benchmarking.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

UtilsRL-0.5.3.tar.gz (46.1 kB view details)

Uploaded Source

Built Distributions

UtilsRL-0.5.3-pp39-pypy39_pp73-win_amd64.whl (131.5 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.5.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (171.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (179.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.5.3-pp38-pypy38_pp73-win_amd64.whl (131.4 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.5.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (173.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.3-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (179.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.5.3-pp37-pypy37_pp73-win_amd64.whl (131.4 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.5.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (174.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.3-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (180.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.5.3-cp310-cp310-win_amd64.whl (132.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

UtilsRL-0.5.3-cp310-cp310-win32.whl (121.3 kB view details)

Uploaded CPython 3.10 Windows x86

UtilsRL-0.5.3-cp310-cp310-musllinux_1_1_x86_64.whl (694.0 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

UtilsRL-0.5.3-cp310-cp310-musllinux_1_1_i686.whl (754.7 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

UtilsRL-0.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (179.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (186.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

UtilsRL-0.5.3-cp39-cp39-win_amd64.whl (131.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

UtilsRL-0.5.3-cp39-cp39-win32.whl (121.5 kB view details)

Uploaded CPython 3.9 Windows x86

UtilsRL-0.5.3-cp39-cp39-musllinux_1_1_x86_64.whl (694.4 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

UtilsRL-0.5.3-cp39-cp39-musllinux_1_1_i686.whl (754.8 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

UtilsRL-0.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (178.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (186.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

UtilsRL-0.5.3-cp38-cp38-win_amd64.whl (132.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

UtilsRL-0.5.3-cp38-cp38-win32.whl (121.4 kB view details)

Uploaded CPython 3.8 Windows x86

UtilsRL-0.5.3-cp38-cp38-musllinux_1_1_x86_64.whl (693.9 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

UtilsRL-0.5.3-cp38-cp38-musllinux_1_1_i686.whl (754.4 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

UtilsRL-0.5.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (178.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (185.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

UtilsRL-0.5.3-cp37-cp37m-win_amd64.whl (132.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

UtilsRL-0.5.3-cp37-cp37m-win32.whl (122.2 kB view details)

Uploaded CPython 3.7m Windows x86

UtilsRL-0.5.3-cp37-cp37m-musllinux_1_1_x86_64.whl (697.1 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

UtilsRL-0.5.3-cp37-cp37m-musllinux_1_1_i686.whl (758.2 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

UtilsRL-0.5.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (179.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (189.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

File details

Details for the file UtilsRL-0.5.3.tar.gz.

File metadata

  • Download URL: UtilsRL-0.5.3.tar.gz
  • Upload date:
  • Size: 46.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.3.tar.gz
Algorithm Hash digest
SHA256 54d19ce33dff62830b2972545e88d42000ce123f32ae30ff4d416dba6c03d484
MD5 b3db495550c3349e280dfa7a72d9353c
BLAKE2b-256 bc6add2dc2476c66dabf77ac347c48f8e3105e00979c8b7dfcf00ed2ea3c9c43

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.3-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.3-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 fc49c8c0934df83d2abf5da66c7d846054a49a2cdbc9703d8f1d61ecd336c48a
MD5 f93dbccbd32eb3e5cb2ae07752a6b26e
BLAKE2b-256 d593e98855474c5c2352ec5b32d5a77962fe37da1615e866521b6df0d2ed7c80

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cbd4e2b6f9b6f9311c724edc03ccac77180d1af288bddbf856cae9ba6c5ef1e6
MD5 b8de09f5cdebda302eb281896bf0d399
BLAKE2b-256 b1b7630ecc4ab05d6e0c89e6f69ffa79c4b40900209999d2b422a93d3b5b7099

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d65f03d91c027bf1e197d9498077945bbeac35d19cf07fcedb0003f333413b3b
MD5 6f58022ca4e25448a55e1c07ad092a99
BLAKE2b-256 8427c6410610d48e3f2930736cff9b3f6b51249304d79e8e1e1ee355d1871403

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.3-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.3-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 92e7b1e94680a07f62e2360e74fe836afd508e3fbfdc32008670c440a0d4f21b
MD5 81acd41ec722e45d2628e60be6d762fe
BLAKE2b-256 eb460d451023e0377aa6029d75a78fc3953e7fbd7ba0952c7925249533cbf84a

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d6c7cbf34280a95ad51777dd0fbf96adc7df4ff53ccb742b05331e27c803378b
MD5 7194ef80f2ccd979dc8f98551b5d8763
BLAKE2b-256 61f0bb0a085a975253f45685dc37f7a311727691ecc4ebe72388cbf1d2888b43

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.3-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.3-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6f5def4fb0b6e7c2a326d1f7058eb1eca35fa3c6b152cca63989a75e1177dd82
MD5 89fce6da3ca328345153c74ad0cc7a6b
BLAKE2b-256 f2ba8bc4a27a5416756a5d7386d2434d06e66a0c80047d239bbb8ba87f132020

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.3-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.3-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 41113be9f67acd6b91f3f0555f4b91d2380d3350c558766d0a97f86864db1e1a
MD5 996425f526b54c4de4085c3630782d29
BLAKE2b-256 258cd2a2571e119d94e8167f2765f7b8ed0b4a1e7d374513a2b34f13be7b3bc2

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b3a8c9ecb971d18a5c999ea060e13d332e2c9be7e02e558bf813bd89120b7c7f
MD5 a04083222c0b01532230441b8c531933
BLAKE2b-256 f27b69f35583a421c279dd827f05542cc6989d75f5894aef199c1acf2d09aa54

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.3-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.3-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a5df7efa3f0624a51a2dfecca0703f54bd27e6380f45bc461901eeee7f160dd1
MD5 e3af445f2d89d35a5fad6be279b6655d
BLAKE2b-256 8445e2ce115536bd3c889661abddd7bb94f3a28115ee2a3cf858bdf4cf4c4a44

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 132.1 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7fa8cac2a26349f4a0a84e837bbea81c92875bb9820bc0112a94b094037135a6
MD5 3210d0628ad806ffb30449afe5140aec
BLAKE2b-256 c58209d187840ce0f4f06f4bbf8fa2b0b5265441e7a4b0ed904d67396269c171

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.3-cp310-cp310-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.3-cp310-cp310-win32.whl
  • Upload date:
  • Size: 121.3 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 99b779cd8c44238082784f0ea75211f92fbe0d263332644d67219eacb31ad291
MD5 6d487a51b4c8f0fb423ced18d231ec57
BLAKE2b-256 7a39cd51093f9aebd088277fdfa296edfc4397283b14aebf63cf2539448f26ab

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7615c233edb7c8855493fe8ddfd5fd21744c75cb70422f17d382ce2c96b5a70f
MD5 51eaffe0009153edc481f5c817c59507
BLAKE2b-256 c92e0f66f799bdb019aa3f55b519345f2acb12bae04c596dc4eb0b7e745e4d13

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.3-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.3-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 78813a5585a700f0a84dedc40f644703b8e952d51a952520d314a249aaae5d79
MD5 55c9e5a142f79ce3c346dffc2ed04a72
BLAKE2b-256 199343ef5872aa46329aa3cb5c78657665f682315bc12b8178e318a251588253

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 57c2e5b30f661388103a85f4abfd71b93cfa62c6f9a9788a92c5306d9c71bef6
MD5 5e6cb02cc05328a7bf5102f3c5be93be
BLAKE2b-256 c117e181668987d47fbfc0e072091c60c36bb3aeda78a155221a0275dad9144a

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bf62ca962b80199463e723435a81f878542b0c7baf620c491ef0564d2cee3026
MD5 797727014e89cb711926d256abc5a1a9
BLAKE2b-256 ba9546e282f38bd1f897dfad7ca6b442b91c1597e6222974a614750de77130c9

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 131.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 be3ded230d01fb92b0af6bcfb9c463384d8dcd2fb46864306928f73cc06083c8
MD5 0eae05dfc84a7d67a4dbe655542d7a8b
BLAKE2b-256 d0c8785c04a92ba226e8d9f5ca49ddd3815c8fec2047523ff706603eeb4fb92e

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 121.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 3b58f5c4f27da7f8bd670a56107d19b874ed7d7df9896850c2363baaee0810e4
MD5 2ebe249a3dd9bce50e7c245797b03ecd
BLAKE2b-256 f41828474887659c3d4d4a0196c85b5d998b5f9576017d816ad67a1848757ff6

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.3-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.3-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d67625a3b458d38e8de36462a9ed24c96723c25592fb8fd3e639255e6beaf7c7
MD5 9694ad8f221833108031a582700838ed
BLAKE2b-256 268a39019285f696ae326ccc6a9b08a2f51af3f336c78bbbd2de3902d6038781

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.3-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.3-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a01ed28fe712251afb38c02eccabaed9f74057fbeca1c4b47c94a82b9a46db57
MD5 6ea9e8b0cb1355e557a0dfcf5eeaf9b2
BLAKE2b-256 2c1eac9ed63e8bf7f89a30cead4d4129642233f9a3661fa68d4100957214ea74

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eb430f2d64275d3a3006edee1c87da613e717205e369aae258eecf2c26b7b9bf
MD5 f71f97d062df87fd934bf0785857caae
BLAKE2b-256 cf945b27305ea9c7f2223abddcfdd51e033f338a188f64683a23c0ddabc59aa4

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5b00271a247edb4915455b7c0ebddbbc876921c9689606d05543ad9a7b3449c6
MD5 be8efb266727e14869d8f6e321cdba8b
BLAKE2b-256 b71c818409d2e0e378b464bfebfffa710bd7bc1d5be2752ad6dd4c218f215624

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 132.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a0cdedd5aee6d26d93141f27be76deb79d979d5f4642595197b773f493cd493a
MD5 d6135ab5cbf1d8941f0fbc5a7c6e0887
BLAKE2b-256 cd06918db324d9a5863a8d6688445d3369403cc80420d6608ce70d49b1bff3ac

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 121.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 4c683e4108194e692fb96f40202198d9b4826fcb725e3280409fa1f33601212b
MD5 7e1ac5a9a69565f5abaf11e978d038b3
BLAKE2b-256 6b6f58b7c95b52a1011e0071cebc5947d5aa5552de24e105cd536c73d5e5d2d3

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.3-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.3-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1ec18d9966f08b8b993c6eab8baaa8e55aef215ae56ae1808d2a3757d084dee2
MD5 058cf6ac0c393bfa9448bb9942f136df
BLAKE2b-256 d33f9d7f2a032be9493ca625bb10e891f94dd6054713adeef45cfc906be4387a

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.3-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.3-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 9a1b798e4d9c7e4262b0c9c47e28a1dc20ded2178337c56dbdc0e9c6adce2f77
MD5 7347e6b07fc043f9506c1e4f8ea9ebcc
BLAKE2b-256 b945aed3f926d7f3b13473fec0f5426024d9b0f79a1ff5efc56e96ed5187fdef

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4a3d883b0ac29ccb30bb3392fe670cd42c0369eb10ffa5c7b8479023b1d38a5f
MD5 683dc0d4898101fcf0eafe1bfdbb7cfe
BLAKE2b-256 ba4ae747a7121451d038f23ffaa3c97abe1848ebb59cf11412c7cf9d1b07c58b

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 86823c58438728dc8eb4f5861607509f5527c4528bf2b37bee2be0365ed8dc1f
MD5 f86a4994d576acb5d796bfbd8c25c72f
BLAKE2b-256 94bf72606cbb78b2780feebc0dc5dca6520606e5a8c0effd8af2b7571c7e167c

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 132.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 aba4a69d188ad3e281127ceb311b80e912e74d26edf6cb8e712285a8c7bba2aa
MD5 9f8e7c393c491029f4faac68f0d3de2c
BLAKE2b-256 f7d7ab8272dda52faa4276a370fd66e619905d92e49788eb51a6bf3af16599fe

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.3-cp37-cp37m-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.3-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 122.2 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.3-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 80907e22f1ca27f4dcee3dbf235b71993fa0be75ecf8ee531467012ebc87bd6e
MD5 ef434c64f460c8c9ba948aafb31ca6f4
BLAKE2b-256 2b8ff0aa5a13ab9fd3c7c638b5faacb6c6eca2bb57e5cc155aed5fc0a8c660e6

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.3-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.3-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d941cba81f991da82c80c0406f40eca2007c7b0e91ab2b385f162ba5d8278793
MD5 a115613f0aca6d84c283d00e1423b649
BLAKE2b-256 ff0478775b634c0e593a7e449416437540a04792e181f9ab9d9fd30587eded0f

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.3-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.3-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 6d6581abc717b99c7754003b8f0c7c757a56a6165b304a9e7e5c8aef48b3e405
MD5 fc212716cd5006d83b3d9b4a921d2fac
BLAKE2b-256 d14feafcca5bb70fed5a85cf593367b86e1a9b0363287497697d606f1b20786d

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e191e028a24d41af63e30c91b15de811d24c383b8e5e276fe84d87cc97a38093
MD5 b81de2feab77040a01f2a198128407b3
BLAKE2b-256 9117e949404cb0cef9035559834ef8561e3f0c923346936d01239ad1d9dfbeed

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4ef0c97aebc1e79a6b9d3f6483f1c1c6d289d36f35e23cfc3395cd24023b7191
MD5 a4941059ca3161c644d30e707293e24a
BLAKE2b-256 8b5bbbe13ca5374685e8cd471c1ad0d2bf5fe7fd4a284e71711a8fe8ea8e89e3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page