Skip to main content

A python module desgined for RL logging, monitoring and experiments managing.

Project description

UtilsRL

UtilsRL is a reinforcement learning utility python package, which is designed for fast integration into other RL projects. Despite its lightweightness, it still provides a full set of functions needed for RL algorithms development.

Currently UtilsRL is maintained by researchers from LAMDA-RL group. Any bug report / feature request / improvement is appreciated.

Installation

You can install this package directly from pypi:

pip install UtilsRL

After installation, you may still need to configure some other dependencies based on your platform, such as PyTorch.

Features & Usage

We are still working on the docs, and the docs will be published as soon as possible.

Here we list some highlight features of UtilsRL:

  • Extremely easy-to-use and research friendly argument parsing. UtilsRL.exp.argparse supports several handy features for research:
    • loading arguments from both yaml, json, python files and command line
    • nested argument parsing
  • Well-implemented torch modules for Reinforcement Learning
    • common network structures: MLP, CNN, RNN, Attention, Ensemble Blocks and etc
    • policy networks with various output distributions
    • normalizers implemented in nn.Module, benefiting saving/loading by taking advantage of state_dict
  • Powerful experiment loggers.
  • Super fast Prioritized Experience Replay (PER) buffer. By binding c++-implemented data structures, we boost the efficiency of PER up to 10 times

We provide two examples, namely training PPO on mujoco tasks and training Rainbow on atari tasks as illustrations for integrating UtilsRL into your workflow (see examples/)

Acknowledgements

We took inspiration for module design from tianshou and Polixir OfflineRL.

We also thank @YuRuiii and @momanto for their participation in code testing and performance benchmarking.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

UtilsRL-0.5.5.tar.gz (46.0 kB view details)

Uploaded Source

Built Distributions

UtilsRL-0.5.5-pp39-pypy39_pp73-win_amd64.whl (131.3 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.5.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (171.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.5-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (179.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.5.5-pp38-pypy38_pp73-win_amd64.whl (131.3 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.5.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (173.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.5-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (179.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.5.5-pp37-pypy37_pp73-win_amd64.whl (131.2 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.5.5-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (174.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.5-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (180.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.5.5-cp310-cp310-win_amd64.whl (132.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

UtilsRL-0.5.5-cp310-cp310-win32.whl (121.2 kB view details)

Uploaded CPython 3.10 Windows x86

UtilsRL-0.5.5-cp310-cp310-musllinux_1_1_x86_64.whl (694.0 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

UtilsRL-0.5.5-cp310-cp310-musllinux_1_1_i686.whl (754.7 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

UtilsRL-0.5.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (178.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (186.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

UtilsRL-0.5.5-cp39-cp39-win_amd64.whl (131.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

UtilsRL-0.5.5-cp39-cp39-win32.whl (121.4 kB view details)

Uploaded CPython 3.9 Windows x86

UtilsRL-0.5.5-cp39-cp39-musllinux_1_1_x86_64.whl (694.0 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

UtilsRL-0.5.5-cp39-cp39-musllinux_1_1_i686.whl (754.8 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

UtilsRL-0.5.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (178.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (186.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

UtilsRL-0.5.5-cp38-cp38-win_amd64.whl (131.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

UtilsRL-0.5.5-cp38-cp38-win32.whl (121.3 kB view details)

Uploaded CPython 3.8 Windows x86

UtilsRL-0.5.5-cp38-cp38-musllinux_1_1_x86_64.whl (693.8 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

UtilsRL-0.5.5-cp38-cp38-musllinux_1_1_i686.whl (754.3 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

UtilsRL-0.5.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (178.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.5-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (185.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

UtilsRL-0.5.5-cp37-cp37m-win_amd64.whl (131.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

UtilsRL-0.5.5-cp37-cp37m-win32.whl (122.1 kB view details)

Uploaded CPython 3.7m Windows x86

UtilsRL-0.5.5-cp37-cp37m-musllinux_1_1_x86_64.whl (697.1 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

UtilsRL-0.5.5-cp37-cp37m-musllinux_1_1_i686.whl (758.2 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

UtilsRL-0.5.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (180.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.5-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (189.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

File details

Details for the file UtilsRL-0.5.5.tar.gz.

File metadata

  • Download URL: UtilsRL-0.5.5.tar.gz
  • Upload date:
  • Size: 46.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.5.tar.gz
Algorithm Hash digest
SHA256 828339c11900dd792c7cc33e0007f720ae7059f0517679fd5be6efdc6eb4bd12
MD5 eba5177713cb8d08375c8dcc7d704945
BLAKE2b-256 ac09fd0a43d79349173da3e333709bd2f94713872abb4bd831ba05c06a107c2d

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.5-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.5-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 103da7bf0c9d45c378b1fe82231158201146ca96c3d0821d103fa9717bd15a68
MD5 964233aaf2c22bd06949692f16dfd17d
BLAKE2b-256 d7eb44299dd2873b184231544d741b95bf8ffec40cc15c0cf57d710d757d3745

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0c6efe5cfa3ee5f0b059a3864f44844dca1a7f98f72a65f1c85f42779f4b1665
MD5 c259d4c582aea0be1fda208b66a2914a
BLAKE2b-256 1ef4847fe6c697d620b1d93e11e2145e54791dc02112db0ca59d920cb4d832f6

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.5-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.5-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b022921ac7d1570a839bcd6aa4ea9e32f4e716c4a58fc8ea85dc4835c46031c6
MD5 7af1ba453c0c1587836a689ca35b1a8a
BLAKE2b-256 f38bfb5fa811502fbaf274e9be650ab91b4736b95ff76a4039b7b363f481b625

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.5-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.5-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 f72f3cffe8e0081dc5ed61a90b347c8a157e3e8fed82433358fb33af2cde1d09
MD5 1bb124be5804ead27f628eed236c50d0
BLAKE2b-256 cc1d14767c6c05c43ef5e0cbbb98638aab5643617d20746a4d22c6d1eb0d86c8

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 690048acfe206a0f94f392a62f09cd33f2fe60cab5796036d3c847cde5fba5cb
MD5 bc63326b03ea25b7b0e7898197a5af54
BLAKE2b-256 30de9b6576a1ee6aa9d6816fab6126952e8946e17d3dd9168c3b6f78a7a915e1

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.5-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.5-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 832494810a6c22a1f98949c8531251197d03856c3a6d914d34b4d033349b7565
MD5 1618581cd33ccacd69e2b26e1b49624e
BLAKE2b-256 3adb38746f1d1ccd672f0c333967057cc0a724b2284d6483b81425db407a8632

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.5-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.5-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 580ea2024b10ae2f5ef343242f1ea228c9787fb5ce935d388bb37449d57e9779
MD5 4994b2f8ea435b942ab20c2a16214390
BLAKE2b-256 10f72a6f327a62702662901bea2fe91bf2c68e2acf44080739fe273d217cb160

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.5-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.5-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 abd15bcb6f36551ea49b7ddff5aa04e0c96a6716ad2637cc5b27f2cf717339b0
MD5 3b739239fae4d22c4880a884b4145487
BLAKE2b-256 f0a49ea0170813644dd8e8edb0f80f110f0dc201e1fab44f68b41e7e29f13ae1

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.5-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.5-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ba04aafe73ed75df34b56e1ef49c6235f81056931705012f2f8eacc5f8ebe6a7
MD5 dee625a3e589d34ed9b3a46b2e03426b
BLAKE2b-256 f640324375a8a4da3261a4ff58fad49ef418798f9984c0150bb2581fd715050f

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.5-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.5-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 132.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ae14466599d0ae14adb31f55d11fe91f3e4988f54123cbf599d1f0c11e8da80a
MD5 9dcc4420f0eaaab4f35faa307a521c64
BLAKE2b-256 a9c1aedb10f5c159d936d59ede62781bf3a6d8ee4e84fbf419e947c86e879d64

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.5-cp310-cp310-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.5-cp310-cp310-win32.whl
  • Upload date:
  • Size: 121.2 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.5-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 65d9a826d00e855f35991f7eea627c560d00c7f95a0446d9bb1459496923bcb4
MD5 4cec2f2c71026e45fe029ca73e3e0351
BLAKE2b-256 5f883162f6ae3ea580aa14e773e2a0c335b4ca189dbd356cfa756fadd9e422b5

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.5-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.5-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4c23b67a3f58465497b965c62506b454af3ebf1a1be435e27f5b4f9a3d252bcf
MD5 6e975c02afdba5e28ffb73404bc55684
BLAKE2b-256 7342b8a9a5f0c937b9669c9b464eeb66cdd31e2000745039ffaf524c518fb396

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.5-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.5-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 cc673141f991bc76c4cb5015998f5aa80e910bad5d002fe86cf55a857ad6cefd
MD5 e558034e262a481eb49b37985250aaff
BLAKE2b-256 5869de82bb7cae0a5709e201108d81d80207f1e01374593c37ffe27db5cc6371

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3ce3d92dc9aea2760c9eaa75b411a484c2aa469ada8103c24dd2ffb40bfe99be
MD5 63860ecc3a7ba75b590376b9fa09d1ca
BLAKE2b-256 c26251e058186dd806d2bcc99c13a7c158e3a8874f647e005a9a678531dc873f

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3b6fee38613ca68fa4b5340e38fad4f91294c72c9c3764486fa288605f7d13fd
MD5 22f2c0d4cfe1833e23501ffe4dcadcea
BLAKE2b-256 a251f74fccb61aa28befd26429b784a068a40b6ad916162eeb75dbd484b0d5ec

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 131.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 93cd7c4664a25b880c280028e9f8f6bdae4535768a6234665fa055cff3fdd50b
MD5 043923e0e5c1759ff6f42e3a26641407
BLAKE2b-256 bb6467cb131dae3e51874d47595a29868bcce73434106118e78b952dfc5022ab

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.5-cp39-cp39-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.5-cp39-cp39-win32.whl
  • Upload date:
  • Size: 121.4 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.5-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 b885669f1f762e9f0c625a501a9bf4f206e7b32d39b5a62f42928813a118f9cd
MD5 8ed627bcbe0307c799a1b70be05f02f4
BLAKE2b-256 806ba28f3a681a9ba8ae2c8b6f80a16ed63380d7d0b3cffbe3fc2f702ecb5195

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.5-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.5-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a2f73f44f2db59794d5fea8a75466c3a2620a050568e1d0946cbd448c75e1105
MD5 4bc3d1ab8a6a53198f701cc692ff867e
BLAKE2b-256 1a1f88d73bdda84eaac49a2092ff21fd05ac27a028f40fecd31f8ecdef729593

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.5-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.5-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ea7fa6b324d9e38e0fb4073d0ceac79325eac2239a0f96b68cc7897e3b8883e7
MD5 8f698ff3cf890bb9ed75e0f0e55c42df
BLAKE2b-256 0a908beed8b2b029c600548621af43b56643616aded20c9d1761ae84f0debec6

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 860a725210d9d6c9524f14a626a803f166048dfa9efdfdd39e98be8caaf734ba
MD5 5db378630d9849bc1b234f60b0620836
BLAKE2b-256 b7d861033e2ff75f0491eaa7e35f4fc0f815d98aa458f7870eb961c44f323437

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 76c5ea8f86d331d6e8311166512c908211116594e0c113d7c0e6819f3b256cc3
MD5 8b404ae7323841501a69b770f845ae5c
BLAKE2b-256 f830608db6ec4ffc092f765049e825e7fc3bddd389736d659b777b2df1f4c8e0

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 131.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 297ffedacafa5054f8160ada0db64715293ac40292b828de5c706286b90b119d
MD5 0f221dc500e108aec45d6299b46a3536
BLAKE2b-256 54f33bbcfde3521227eac77c7796017245b0a50bdab61d4869e14a1c35419b18

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.5-cp38-cp38-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.5-cp38-cp38-win32.whl
  • Upload date:
  • Size: 121.3 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.5-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 a74f526007a5f5f09979dec54c4b35a7ba3640332d5d562f9d07c5ab291d3d3c
MD5 4bb51d992f8d325934ed4a5ede89f798
BLAKE2b-256 0a644e5c223802a9e39f3f93dbc0a756b8d62692ff4fa0aaa300f5cd0fe70b88

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.5-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.5-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 904e2c3c7ee59896725c6372f1df4491e01e7a5bea0fdb82bfaf5c1c88627b25
MD5 2c99556e1c96bb79877ecb9a3f48ed08
BLAKE2b-256 f2da955b4469ffb7793413f65b453537b47c258c3330e2b0c6c2e2eee5f75d87

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.5-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.5-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 72e80311521c6afcae2948420f5dcf7f1413575eb95fbd7f65c1bfdbe72e057a
MD5 5048a080134e6ac1943c955159f79e76
BLAKE2b-256 9cf96d102f4b344dd29f8993f3726d8d8042ac703459f5554363e0e4a9e6e1f5

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c1d53b26e4ea12f57f27dc07133c67e3fb572b3ebe72055a2a50365b146df3e4
MD5 8cf7e2574dc702ab4b7af9ad0f8d7c95
BLAKE2b-256 107c2e8f097b9cc1e988a0881a8e559302c8a0562b6432a1b08751f29e11dec3

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.5-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.5-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d36a9268161ecc1651c152c52bd650ed1e3510079a0d48de596aabbbbfb690e2
MD5 ff9c7c2f47090cd27b09900e986508e9
BLAKE2b-256 cb004591ed945f6e6beb27fee42e334d6fb2f2ee7ae6347beb33fbccee025522

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.5-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.5-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 131.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 71716f6a8e8590e6a437192949da09f805a442639948bdd8a9b3939a52de1fe0
MD5 4e390e316b636ad3872dcb4053726c08
BLAKE2b-256 11bdb596ce143f17bf2dfedf33557535fafbc434b18dc3d021f1b59439e822ee

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.5-cp37-cp37m-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.5-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 122.1 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for UtilsRL-0.5.5-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 ef72b73229d9f7e25ee426dd24f7e96dd8f5a3973b4bb4303f2a9727b233e9fc
MD5 45c9766ee0d802081013978c132d6441
BLAKE2b-256 6c398658cdbd07cbbd3a26944ae9298ca8082a326b4f5061045e75f528b4b521

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.5-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.5-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f7fc7b7f675fa396d4198a2d1937bb8bd3d1269a5395de6b94e777f3900b86fa
MD5 c5334712c8ed244bef47ef80f0e8acfc
BLAKE2b-256 00f104fba869eb99c2de4cd3a5598e7e2d70db3744822e150e3c841094a1f576

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.5-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.5-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 cd979df26c882f9c53ad6da3c46455f602af1d6a7779c535a493876b5bf90114
MD5 d5a89ec5c5ed6123992307f84dc9d705
BLAKE2b-256 612d0021ae434d81f2c79adc0d1daa2dc917164709a179863e44e0942e9d662e

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8c763ad9bc80cc3729383cdb478e82d49f076445daf722668427cc086d840611
MD5 5d11b1a40af558b88897ec403de84012
BLAKE2b-256 9ed3a1de849a362e16c10b43128da72158a8336571b9b4f8c9a0518a2b633976

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.5-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.5-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 93f39661ea7ee1296e51d6a5e7ecfc27602a06b7bc8059dc84fceb102a88fee9
MD5 24b183fbb0dafaed496ea4bf21ee4779
BLAKE2b-256 ceaa8432ecb2609ca64e2a8e139b168d32813cdc3d25ac8e2eaf5be76fe84146

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page