Skip to main content

A python module desgined for RL logging, monitoring and experiments managing.

Project description

UtilsRL

UtilsRL is a reinforcement learning utility python package, which is designed for fast integration into other RL projects. Despite its lightweightness, it still provides a full set of functions needed for RL algorithms development.

Currently UtilsRL is maintained by researchers from LAMDA-RL group. Any bug report / feature request / improvement is appreciated.

Installation

You can install this package directly from pypi:

pip install UtilsRL

After installation, you may still need to configure some other dependencies based on your platform, such as PyTorch.

Features & Usage

We are still working on the docs, and the docs will be published as soon as possible.

Here we list some highlight features of UtilsRL:

  • Extremely easy-to-use and research friendly argument parsing. UtilsRL.exp.argparse supports several handy features for research:
    • loading arguments from both yaml, json, python files and command line
    • nested argument parsing
  • Well-implemented torch modules for Reinforcement Learning
    • common network structures: MLP, CNN, RNN, Attention, Ensemble Blocks and etc
    • policy networks with various output distributions
    • normalizers implemented in nn.Module, benefiting saving/loading by taking advantage of state_dict
  • Powerful experiment loggers.
  • Super fast Prioritized Experience Replay (PER) buffer. By binding c++-implemented data structures, we boost the efficiency of PER up to 10 times

We provide two examples, namely training PPO on mujoco tasks and training Rainbow on atari tasks as illustrations for integrating UtilsRL into your workflow (see examples/)

Acknowledgements

We took inspiration for module design from tianshou and Polixir OfflineRL.

We also thank @YuRuiii and @momanto for their participation in code testing and performance benchmarking.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

UtilsRL-0.5.6.tar.gz (47.2 kB view details)

Uploaded Source

Built Distributions

UtilsRL-0.5.6-pp39-pypy39_pp73-win_amd64.whl (132.7 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.5.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (173.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.6-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (181.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.5.6-pp38-pypy38_pp73-win_amd64.whl (132.6 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.5.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (174.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.6-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (181.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.5.6-pp37-pypy37_pp73-win_amd64.whl (132.5 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.5.6-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (175.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.6-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (181.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.5.6-cp310-cp310-win_amd64.whl (133.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

UtilsRL-0.5.6-cp310-cp310-win32.whl (122.5 kB view details)

Uploaded CPython 3.10 Windows x86

UtilsRL-0.5.6-cp310-cp310-musllinux_1_1_x86_64.whl (695.3 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

UtilsRL-0.5.6-cp310-cp310-musllinux_1_1_i686.whl (756.0 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

UtilsRL-0.5.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (180.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.6-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (187.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

UtilsRL-0.5.6-cp39-cp39-win_amd64.whl (132.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

UtilsRL-0.5.6-cp39-cp39-win32.whl (122.7 kB view details)

Uploaded CPython 3.9 Windows x86

UtilsRL-0.5.6-cp39-cp39-musllinux_1_1_x86_64.whl (695.3 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

UtilsRL-0.5.6-cp39-cp39-musllinux_1_1_i686.whl (756.1 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

UtilsRL-0.5.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (179.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.6-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (187.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

UtilsRL-0.5.6-cp38-cp38-win_amd64.whl (133.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

UtilsRL-0.5.6-cp38-cp38-win32.whl (122.6 kB view details)

Uploaded CPython 3.8 Windows x86

UtilsRL-0.5.6-cp38-cp38-musllinux_1_1_x86_64.whl (695.1 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

UtilsRL-0.5.6-cp38-cp38-musllinux_1_1_i686.whl (755.6 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

UtilsRL-0.5.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (179.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.6-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (187.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

UtilsRL-0.5.6-cp37-cp37m-win_amd64.whl (133.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

UtilsRL-0.5.6-cp37-cp37m-win32.whl (123.4 kB view details)

Uploaded CPython 3.7m Windows x86

UtilsRL-0.5.6-cp37-cp37m-musllinux_1_1_x86_64.whl (698.5 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

UtilsRL-0.5.6-cp37-cp37m-musllinux_1_1_i686.whl (759.5 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

UtilsRL-0.5.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (181.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.6-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (190.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

File details

Details for the file UtilsRL-0.5.6.tar.gz.

File metadata

  • Download URL: UtilsRL-0.5.6.tar.gz
  • Upload date:
  • Size: 47.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for UtilsRL-0.5.6.tar.gz
Algorithm Hash digest
SHA256 170f2d3cb4ddff5f89326f5ae244052c439727c3e6130e559abcd3ede1e37313
MD5 d1faaf0473c71bfe86b540961f107304
BLAKE2b-256 db70591560055b91e4bb2b898752eada4810bc8870905844d54fe70f93a8cf0d

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.6-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.6-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 2216958f0ac4e9a7b738c395ee120f98e4649acf8636724ea495f0c8d487cc83
MD5 0a10f9bd694072c43893babd4c19adcb
BLAKE2b-256 194a66f96ae014e0d262ea75425e4cdc64c19ba8d4de1b263461f26c482c53c6

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0632d86d001a9cd536f26c6bb145d9ffba623375af254d0d5c3359fe523cad14
MD5 25716dfb2d3c705a0c77dadf23f5aa43
BLAKE2b-256 e3529e4cd35b8b521cbe28d9519fa9884e694699f14607b444b9ea596b211178

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.6-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.6-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 66b23767a219b686d8db125833fdc80f6aebf9ce44834b29e63ae139b91fee0c
MD5 38fad4b7f9219c7ab5c0d380b4efb79d
BLAKE2b-256 042684ad4054cd188e3fe1f49ec644d6d8907d6608acf7b90e4281e22de2a38e

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.6-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.6-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 bbded208ab17906e3bf139b6acaf571b44363e548bd958d96a88cfddba77c045
MD5 23e3447523a2f021b7239b0eed49299e
BLAKE2b-256 7d604ed8fe95f6376511cfffb6b36ba133e119f666b935ad2ec1a09faee5808f

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 accb5c14cc2e948cf6193acdae626174435f527d65f656290fe547ab147f57b1
MD5 8e077f2bb879f69ccc4686e04fee5ba6
BLAKE2b-256 31f0ea7d3bc07cf1a4ce0f9cca30245798c179dcc2200265760de2a9e5ae5b89

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.6-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.6-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2bb517c9155ad3b97e2da509a79f51639fac8bb6d1253b8c6971c0b428deefd1
MD5 7cc59f82f2a456498fdb7d4b955db079
BLAKE2b-256 dbb0b00e7a25b85ec1bd32c44d58265a5b6e32a73e73a9ec99e1eb2b6af1506d

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.6-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.6-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 7f78cb0359e182b38395b08c1d0b0b16be8677022a65895b0a616df4e89505b0
MD5 7653c31ba3aab91286a655df2f6a9206
BLAKE2b-256 1256d6c1a04101874855081286f53d331db47de74b82e6d974849c8039587fae

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.6-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.6-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1af48bd7977edd13660bd87c26876efc5b9a74a81f072efa1af9cee9733c698e
MD5 8097784d712fbe9ff92e56d742f77fe8
BLAKE2b-256 8dccc816e9e6a152cd10f31c31e58fa0af4259dcd73dd35d4d60705cd745eed4

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.6-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.6-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 50d4a162cfb6850c073805cc384aeb0ab3c5454e977e6abe0acdc8e4fd1081d6
MD5 bb49f4ba1e71b564c197309798d300ab
BLAKE2b-256 aa00188575941ee88de6b204d165b8f906fbc4116ee9be19664454d3556f0eae

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.6-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.6-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 133.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for UtilsRL-0.5.6-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 eec3a2301aee46ddd8d426019d97bc8cfc40ea2d0e126cd8de459f442a0fbd82
MD5 16505d34cb7ddc20d9c677c9a9b68d93
BLAKE2b-256 aa96d44950e6fb82fa4b1394accecff10688e3bfaeb9acf95daf11e0e0cef75f

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.6-cp310-cp310-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.6-cp310-cp310-win32.whl
  • Upload date:
  • Size: 122.5 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for UtilsRL-0.5.6-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 2639b37312d869fd7d59be40cb7e181a68fdc86b31f8174f673d25a95c36dd8c
MD5 a0906bfc43f14a9b12857173d07a7b06
BLAKE2b-256 6c5b123f5f3980cacfed3c3129b3ad8888fc73f8e4cef341c57b9fe2296d9972

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.6-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.6-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 acccbb0af2c7541263833cbac703798def2c62d4bb82b53483fb3661f96ac9d7
MD5 245bb29445f8aa25f8fe0a6620997580
BLAKE2b-256 727e3d4eb9349ce188424d45e3b7eb5070e30c34412e97360659d86b8499f310

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.6-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.6-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 687ab5ab98c82e13b43939bc3e51bc11c37140ddb4a2e62895f19c2dcea296d7
MD5 191cc5ec5175f9f77d9f07e83a453ff4
BLAKE2b-256 461594ade59420ddbde837ae39d0bbf2e153731083ef0ed8a484675d955b869d

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 85cddcb7cc2c8d3d88c9443af2d109986835543495ebf686413d101247776b6e
MD5 4a587f6a6f8efad92e02e17c02c0d348
BLAKE2b-256 c5e47859b10bdcf75c7beda513f79391f727222085e630027be59f62c946225b

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.6-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.6-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 70bf6e45e687324b553c3f61e204ec06746c2898fd01350a8406d362a9b62b98
MD5 7839a90ca378325b9c2dfb543f0ef0aa
BLAKE2b-256 4d51d9b2d8d0b3b628a7da6f9c5b07bdfcb06cc26fab350de59c26ae722377e6

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.6-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.6-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 132.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for UtilsRL-0.5.6-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6d465f2b335b94dbafa6247222ec4161daf8167f6745bd13ae04076d917aa941
MD5 517d77ff8a9931c87d96c7174deb20a0
BLAKE2b-256 cdceaf6226949e3c4251127bf4577b56f495fb154636160bef0267df8cf0e983

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.6-cp39-cp39-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.6-cp39-cp39-win32.whl
  • Upload date:
  • Size: 122.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for UtilsRL-0.5.6-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 d4973b0a669e1ffb849f342678f10a65e8f184475cd4d019f29da1b64c00ad98
MD5 b7904c21136548f008fcc7a10d7ed9a8
BLAKE2b-256 0d60ed66edfe3e5d821ce59ea8c5810e83ab550e0bddaae991c9a8b7bb5703da

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.6-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.6-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ea095f2180f7ca47e374b9fc647e0cb286b283373bb72f16efe41f6421c4972d
MD5 e58950f764968de682c6621d870474e2
BLAKE2b-256 ee30204b79efcede19cab24eb2fc27f176708f54615923c5532e4fac27b2d56f

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.6-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.6-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 07f8047d426766fa6f0458e1d4f5c0638cb82ff6a78c0b36b24453d37df73906
MD5 4bb85b8ad1d1b6e69cc34ebc763a8530
BLAKE2b-256 b9c6a9306a48b07ef246fba4ee2957528511e5a712c1a28c2ee4503c939a2c41

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 29539546e26ba39b94b1b9c739b36f6d7e344bc926766b8046819656f6ae124e
MD5 6161f6abe7f1d3994e8cfef0ee7dce43
BLAKE2b-256 206f4bb03c9d3d4095c5354e05c334bf5e82982f2c62ccd3dc824a6be8ea65e9

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.6-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.6-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 668b62bdaeec9cbd9e52551b67d87774fcb45c095f74e9cffa5d7777dc68423e
MD5 b5e02fac66c8515043f74c5b76366759
BLAKE2b-256 ae82e8c8d6eaca47eafa1911cd70c719fb00caeb5e427b7a54a2359952e97440

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.6-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.6-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 133.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for UtilsRL-0.5.6-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4405ff72b549b0f6cc79a17cae7246dc8556caab5b4f4a2dfc35093eea029d23
MD5 21dc6e4e034e8e8cca36f2a17e32b168
BLAKE2b-256 a2f1da1767d6b15d832acfcf9eb13787bc2ba5284f32b4be8c72e3bed1949532

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.6-cp38-cp38-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.6-cp38-cp38-win32.whl
  • Upload date:
  • Size: 122.6 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for UtilsRL-0.5.6-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 d1cf0ab1609225d64bfbd138e51cdc1518a0ddf95dba0815abb1ec3c5b00282d
MD5 a8a23bf5d158490f6d60bb85e8a4068f
BLAKE2b-256 9eb3f0c47d78999dd3580d21e2855716293b36addae3d4981693b9b30ea08e21

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.6-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.6-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4f62fab829fd443fb7388cbf95c3d2cd817535b47d82549db37602a2bd47194a
MD5 324b1584039f7ce9f5c41a73bf43962b
BLAKE2b-256 1be6ef029dfa20101bc9740f4d79b1cd6ad65168ee5b857f2038c31a6ef48d91

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.6-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.6-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 3baf3ab548881fc183e473518d3f9d3e132bfdc3031c64d6e7beba5e9dc4b23d
MD5 a9da9a15a51e22043f170e208ab19c25
BLAKE2b-256 4de0e1a3e71b7ecf3d6f5c206d55c888a6625bcf497b2878342059ab74e2919e

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1dd2b0d3845edac15a34b740bfc88fedd3918b1ef3d2fac5b989aa897c5352c9
MD5 4f2dc64d194c8487f8408e22803ee67e
BLAKE2b-256 69e1a0377ce74c04c5dafa297cc3abdbd43acce1025f40a4fd62ad7d30172871

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.6-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.6-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a548fc604ccfb0acf364a6e3efc8c8429650024dc5b2d5917b04ba97bd73c31c
MD5 b8ac8db50733c6af5dffb2809bbf28a5
BLAKE2b-256 1a41204e2f6be4e5bf6b28b3d39848d052042915c738c7a1703060b1480cad17

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.6-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.6-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 133.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for UtilsRL-0.5.6-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d6b09c5c54a58500b871e5ea414c0cf9d202c339cd31cf49616a30cb5e4c4c43
MD5 b7ede6b7e417d68eeaaec2fa4f821279
BLAKE2b-256 a4c728247bb622dc33c4f3261f98d4988f0be026404421b06f2cd49bd0b44a0a

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.6-cp37-cp37m-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.6-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 123.4 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for UtilsRL-0.5.6-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 904be06866c026e405fbae00a66c7307d26e93e4c40c953e60c221d217bd8ee7
MD5 1a68b376abf918ccd9c5b013ec97d40f
BLAKE2b-256 ff234712693388cb9a645d09d2ca5dde2919c10bc69d37c0c3b6580ec17f3d4b

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.6-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.6-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e2e2b8762e665570f4293ff741397615d0b4d9d21fa603534d9a76b76153b018
MD5 f42f45e5f88c3e654960c6d35d26157b
BLAKE2b-256 6099cff032346a7d4c2bff7b497a20acf55bfacd354ee64dbe4fab3ee7f9fce0

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.6-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.6-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 566cab085ff1c348a9188ed838d998bd8628a21f66943d52a920c6d385774e7f
MD5 58ca22fc4efa02298e5f5488c4d3b2ab
BLAKE2b-256 59e11800fc64e6e11d012be07fe168bdd81bc8ed29063b35600ae450edd9092f

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9c3ddf584f9260f1d9bfb39d3adb44f47bed98fdbae5bb5fe3b1ef08d7ccad16
MD5 417e49d52d74bc12ec97275036e4f91b
BLAKE2b-256 d8f7927b34ab4152c9f07844c62005a78576732500b3034e704048bb254a43cd

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.6-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.6-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 34e157df243b9785834550afd1258d27971e6941a721d67d6dfaca936bd95a2d
MD5 3975148318e09f1e30dbabeb9561b295
BLAKE2b-256 de37f4bf33e66b6738336ffa9d621872bd3fe3fd618226ff015782a2743820f2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page