Skip to main content

A python module desgined for RL logging, monitoring and experiments managing.

Project description

UtilsRL

UtilsRL is a reinforcement learning utility python package, which is designed for fast integration into other RL projects. Despite its lightweightness, it still provides a full set of functions needed for RL algorithms development.

Currently UtilsRL is maintained by researchers from LAMDA-RL group. Any bug report / feature request / improvement is appreciated.

Installation

You can install this package directly from pypi:

pip install UtilsRL

After installation, you may still need to configure some other dependencies based on your platform, such as PyTorch.

Features & Usage

We are still working on the docs, and the docs will be published as soon as possible.

Here we list some highlight features of UtilsRL:

  • Extremely easy-to-use and research friendly argument parsing. UtilsRL.exp.argparse supports several handy features for research:
    • loading arguments from both yaml, json, python files and command line
    • nested argument parsing
  • Well-implemented torch modules for Reinforcement Learning
    • common network structures: MLP, CNN, RNN, Attention, Ensemble Blocks and etc
    • policy networks with various output distributions
    • normalizers implemented in nn.Module, benefiting saving/loading by taking advantage of state_dict
  • Powerful experiment loggers.
  • Super fast Prioritized Experience Replay (PER) buffer. By binding c++-implemented data structures, we boost the efficiency of PER up to 10 times

We provide two examples, namely training PPO on mujoco tasks and training Rainbow on atari tasks as illustrations for integrating UtilsRL into your workflow (see examples/)

Acknowledgements

We took inspiration for module design from tianshou and Polixir OfflineRL.

We also thank @YuRuiii and @momanto for their participation in code testing and performance benchmarking.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

UtilsRL-0.5.7.tar.gz (47.3 kB view details)

Uploaded Source

Built Distributions

UtilsRL-0.5.7-pp39-pypy39_pp73-win_amd64.whl (132.7 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.5.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (173.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.7-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (181.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.5.7-pp38-pypy38_pp73-win_amd64.whl (132.6 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.5.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (174.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.7-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (181.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.5.7-pp37-pypy37_pp73-win_amd64.whl (132.5 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.5.7-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (175.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.7-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (181.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.5.7-cp310-cp310-win_amd64.whl (133.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

UtilsRL-0.5.7-cp310-cp310-win32.whl (122.5 kB view details)

Uploaded CPython 3.10 Windows x86

UtilsRL-0.5.7-cp310-cp310-musllinux_1_1_x86_64.whl (695.3 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

UtilsRL-0.5.7-cp310-cp310-musllinux_1_1_i686.whl (756.0 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

UtilsRL-0.5.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (180.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.7-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (187.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

UtilsRL-0.5.7-cp39-cp39-win_amd64.whl (132.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

UtilsRL-0.5.7-cp39-cp39-win32.whl (122.7 kB view details)

Uploaded CPython 3.9 Windows x86

UtilsRL-0.5.7-cp39-cp39-musllinux_1_1_x86_64.whl (695.3 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

UtilsRL-0.5.7-cp39-cp39-musllinux_1_1_i686.whl (756.1 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

UtilsRL-0.5.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (179.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.7-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (187.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

UtilsRL-0.5.7-cp38-cp38-win_amd64.whl (133.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

UtilsRL-0.5.7-cp38-cp38-win32.whl (122.6 kB view details)

Uploaded CPython 3.8 Windows x86

UtilsRL-0.5.7-cp38-cp38-musllinux_1_1_x86_64.whl (695.1 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

UtilsRL-0.5.7-cp38-cp38-musllinux_1_1_i686.whl (755.6 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

UtilsRL-0.5.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (179.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.7-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (187.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

UtilsRL-0.5.7-cp37-cp37m-win_amd64.whl (133.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

UtilsRL-0.5.7-cp37-cp37m-win32.whl (123.4 kB view details)

Uploaded CPython 3.7m Windows x86

UtilsRL-0.5.7-cp37-cp37m-musllinux_1_1_x86_64.whl (698.4 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

UtilsRL-0.5.7-cp37-cp37m-musllinux_1_1_i686.whl (759.5 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

UtilsRL-0.5.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (181.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.7-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (190.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

File details

Details for the file UtilsRL-0.5.7.tar.gz.

File metadata

  • Download URL: UtilsRL-0.5.7.tar.gz
  • Upload date:
  • Size: 47.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for UtilsRL-0.5.7.tar.gz
Algorithm Hash digest
SHA256 cc9bf18c3178f51e559edd30bc94a19dd11b36e5e577fd2edb3640eb048e4ad7
MD5 c87a62ae41b4a37f9fdecc492bb6361d
BLAKE2b-256 8ad4d4602b17e977f7a175dfbacbf7c30375592752beb39575dd4f610ea27d92

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.7-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.7-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 fc67aac47aa30bb6f3f40c771eb4c747e7eeee4c91ec7e00af55c816bae2535f
MD5 09e2e166a5a52e14bd5a99815c15cb0b
BLAKE2b-256 7a10beb016d1c7342fab332d7f5886fec43f99972867fcfc885d5daab6ce61d3

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 83c87027a2a71f19372d99ba4719b76fe9477ff4a7426270d89fb6ce23b0cf5e
MD5 9b6d213ff895462328ff2fc20f4ae69d
BLAKE2b-256 eb3ea353197665a79a06de9e13191918c515cd2dc2f7dd802ea4f5c349641ab2

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.7-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.7-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 020f47fd3f7357c0e0c10897f6dcc99bb71c1ad132e7e176b6d06bff21822497
MD5 f49cb21780819ead356eb498f39418a0
BLAKE2b-256 db515d7aaf7b57e1f392289fc4a236eafac5dfc2eb0ff5c547c1574161110f02

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.7-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.7-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 726131b0a4f45a1fdcba2324de17b494628ca59db9364052c6a0bee39d03e382
MD5 64f432eca60b789ccea1d93f7e2855b4
BLAKE2b-256 2a002d5bae68fd3e84043e579b0536680aa956d6cb7188e3db710e7f939efef2

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 726978171430934061a78eb4ede4e83dca9d60bb26650e32dbd108e749dc3606
MD5 a03af63adef400308927e083d14ab052
BLAKE2b-256 14cf1557b13eb73d4a8d71cb85dc0b2dfffecc92a05acfdbaf1cd614475dcc7a

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.7-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.7-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 38aaa508e166a19e6a83fa18335ffb3e3c016c75a4d0e80c981cac9b2c886886
MD5 b0a7b9f51f2a095f8c9b44e501f8a700
BLAKE2b-256 9be97e2df5b88b8d4557fa3258db9c31a40c25d10bfd4d1ffa1a8ee7730af05d

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.7-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.7-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 335d5d4f716673b7e15426c0b2e201810dc64421cd74c2a96d7b6a9c8d9ae5ef
MD5 d3c88f74a3e1053c23ccf216432a0a7a
BLAKE2b-256 c03034c7e9b10889154227ae014d1c6421fe324dc6f79ef01f101b3b606a800a

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.7-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.7-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a7b373637d14759aa4c2365aee077c4aed65f47e96c5e1a1f2035558a952c8e4
MD5 085876de019f9238f5fcb4ccbd3a0222
BLAKE2b-256 615344f1855789ffc2fa074da09a4d3721db96ea938ad546fb1b5260d15d71e3

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.7-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.7-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 008be21b0aead486f3464406e355544f2febda0d3b1e4cc992b36716d4858ed0
MD5 996aa47f5a9d7416531732174369080c
BLAKE2b-256 aa5f9c313ff06a246166a15e96637dbd817d0a84e2cf5c7c302b907865e553b1

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.7-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.7-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 133.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for UtilsRL-0.5.7-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 047ab50f7dd61f36425518c348222fa8ae4d96153318dcf9eed8319bf6d6980d
MD5 7119d45373bcbefc6f05ebc512101964
BLAKE2b-256 f7be84259fd3233722c3857395b3e5e3c3b4685e977f3ab06a58c57c98254426

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.7-cp310-cp310-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.7-cp310-cp310-win32.whl
  • Upload date:
  • Size: 122.5 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for UtilsRL-0.5.7-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 671d8d38fdaeeaa574987157c2ff592b80a6d99842e4efc30b5c13090827d013
MD5 2050d6c4558515f53a6201a49d6d770d
BLAKE2b-256 44a075e4f5a76e6a22829cfd249104aa8481c970dceb1b4488b51d94bb4b23fe

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.7-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.7-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3ad2a9d4d1c29317ad98e5a7f74139da83dfe268fbd849714e84582c2b01d5bf
MD5 fe90eb15eee9f4a35d1d75a5cc2ffb0a
BLAKE2b-256 bd49983e8e004cfe39bd6dcfdd06c14eac7d071f789d995bacd69e871d97ddfc

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.7-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.7-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c6ad8b19a545823d7199f983ebb597eb585988574c7f341c92a56321030b6028
MD5 7855dd45d746c54b673886a73d992d6a
BLAKE2b-256 4026e834efc6e6e1a20e33273b26dcde210e1f358dbcb7abaed5b3009c5afbae

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c59b78c7c72bdd6504d325a030a58b244a60f588200e760d7f72bccf96a0b1b3
MD5 d26126da6f93ed393412e0a4dd8b2fd2
BLAKE2b-256 583e989dadfd8b5334bf62911f3c4db585c872a843d306c4f915bfd902d383a7

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.7-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.7-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 43dcaf593d3dd8a5088f479ec26819f2011fff0041a51f7a004f87f7a8acea10
MD5 6b2c5cd405a4377df9f9fd8b6a071f55
BLAKE2b-256 44fc9789d0f4cd9c775d01ee1c4adf194ecb56ec357a43b1b921966c1d737625

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.7-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.7-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 132.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for UtilsRL-0.5.7-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c84bd46779a28979ca9dfe87ddc9d95c109bac8a69829eaf2a1504c9b5497a6e
MD5 436fac826b404db14c0e3b3faec98467
BLAKE2b-256 4441397448b7eae502400e3089b420872bb59f4ab73e3c28a28a4d728381c629

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.7-cp39-cp39-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.7-cp39-cp39-win32.whl
  • Upload date:
  • Size: 122.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for UtilsRL-0.5.7-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 e9f644d2ba5904efa899c7e174279fa3ad08ba19a5529c5211ea0a796193d05f
MD5 870a2275e4c7dba6a01f8e98ff8bfa00
BLAKE2b-256 1098009b65358df9a741c4e1a9a1db9263115bc884279b323a38124fb3632ae2

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.7-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.7-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 876cd9dd7de2979795e275fb159fef55c910709ccc03bdacd5c8ea13c3e05866
MD5 cac4870273c2e260ce83fec54dd16cd7
BLAKE2b-256 7c01b2c937d083580c08b0fefd0f5a6b8e4ffaeffa3844e992e9438364c1e6ad

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.7-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.7-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 db691c9f6ceaed78952dc50da5ad3299379b3a1a4b17f21f34b734b1e54c46ab
MD5 40354be268f7aeda581b08e68e51eede
BLAKE2b-256 f7fd6f20abe8e728fb1bd89492ddcf14edea85f30580113d44f586a6a28a58f7

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e364aea1352e35a7150f9800d04987dac1e31a53bb72fb5a4751a043c90ef149
MD5 aec2ce2bda5aba7e8cc42e1f73b398f7
BLAKE2b-256 9ca0c9af7460da49c831d4f376b1de45371b45b651c79cfb7a5671505b13d805

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.7-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.7-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 37cf8dcd8ab9ac82c3adb3c3b53d69902595e02f3dedc334d1d98df8c8e0d27c
MD5 962fe1cbc7312e87199798a938c46696
BLAKE2b-256 5ceefa048f012b4e88aa927e17977cb1769666a5f12b87211c413bc1f30460bd

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.7-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.7-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 133.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for UtilsRL-0.5.7-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d94b4a131fe9e28188bdd67150023eb27e402bd0e5dbd8e209422f21f48d41c3
MD5 3f6332db25656b2ad564b3e365c071d9
BLAKE2b-256 f927e2cce0c6448b0bbe09575cd367743fef2bc6d985c8fcdfe6426fa9e8dbaf

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.7-cp38-cp38-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.7-cp38-cp38-win32.whl
  • Upload date:
  • Size: 122.6 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for UtilsRL-0.5.7-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 8b9ca7e458eb2182c5ff1e66625294a53252f769073a99f31b2ed9696b0d9ccc
MD5 3a8dfcbec34eabe54185301f75866abc
BLAKE2b-256 8f05ba15fb62420e6f4757ba16dfa34506038eeb6221d1c973aec7a798136102

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.7-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.7-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 36eee8dd05cb015003a9895b92bca7dd9e31fa3c323cef804b1d01ef7a2042e0
MD5 47310b89ec2a28bcc6d96833fde59f27
BLAKE2b-256 6d14bdace898d265767877e3683bd4b575c5c257ff222d299b52a76209960645

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.7-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.7-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ae5e938cf60665c0e581c881c979a014e996d155e493d4b1186f3040102796c8
MD5 343d9c43e7b2bdeecd4b1c7337471f6a
BLAKE2b-256 a625d4a34862984ff6b704af4d5f743fdd5c2cae16956bb4b9b0b25b7c80e88c

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3b9735ec6be34176362b5a59cb1ec5cb8a4e5751a891da777401014c65487d5d
MD5 ba28a717610f1672cab2c73ee7dc68e1
BLAKE2b-256 be1bc6908192f5c43bed94f6763aaf160962c08c93cdecbcb376fcb2fecc7f61

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.7-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.7-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6a6c4c24a1f8d67fcb9c00a9ff9718617c4ae5d81fcb016efa83445068b1f667
MD5 7c24596cb6bad1152a0dc5713b0cfdb4
BLAKE2b-256 7592acdb169a9116644179dbc07630bf20b668f7549be2281e6cb7477d7c8209

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.7-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.7-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 133.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for UtilsRL-0.5.7-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 89b27b414bd7d127968fc1e491f1464661a6c6b605118300d60e2e705abe1ec4
MD5 992d94e61f6e16c89f93f1326bf15d6d
BLAKE2b-256 44b233da36862d9f7560e0cf20f2a8ebb79ba7c1602addc350b0acf3be45ac62

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.7-cp37-cp37m-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.7-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 123.4 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for UtilsRL-0.5.7-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 4fd1d6fb42ebe12fff48d239bce08d4edc9092d27f985e948231e9140ecc91d3
MD5 f6990a5fbac53db74c90a973dc56c6fd
BLAKE2b-256 3049f78d8ac28ef874e5fe11608f5aa9af0fb0cbf1fcbf9b71b747990903bf39

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.7-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.7-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 eab4240b2dfa782e68f5f3e84bf3438fc263115815e320ea84cb3aaac341d6c1
MD5 547b58295172f3b972b6e0b67edf1b65
BLAKE2b-256 019765ce0f6e403cf8de686ed6c9a60a6ce3764175bc56fb69c5a7a63eb4a357

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.7-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.7-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 4efcf860eeb16853a007ad38d968c7a9b633464a5fa251899ab8d596cc3f8336
MD5 e237f214d327d523df67a7d2f49f97f5
BLAKE2b-256 441cb67dbcc257f6a2cd3be653b1798b2c9cfab6d5db6e6980525b6bd8598c89

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7f0ae3b59106ad06bccdcf8145bfa6fe43f27cc83c41dfd8497bc5f57bc195cf
MD5 137591b478531ed107f1e0e2fda4ba0f
BLAKE2b-256 1969f2f0ab844a18cf332802b1ee77b5604eb1e2c97eed8c05002a7387da07b9

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.7-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.7-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 860454f6a3ea086680749339721b4de7fde350a0f7e65df744d0c1c9434b53e5
MD5 ebcc092ffa5af139fb0bc627b8a31cca
BLAKE2b-256 e7602c798eaf688cbd72aea9cd9961a95d4b5975a55967edbfe03837d7a47d93

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page