Skip to main content

A python module desgined for RL logging, monitoring and experiments managing.

Project description

UtilsRL

UtilsRL is a reinforcement learning utility python package, which is designed for fast integration into other RL projects. Despite its lightweightness, it still provides a full set of functions needed for RL algorithms development.

Currently UtilsRL is maintained by researchers from LAMDA-RL group. Any bug report / feature request / improvement is appreciated.

Installation

You can install this package directly from pypi:

pip install UtilsRL

After installation, you may still need to configure some other dependencies based on your platform, such as PyTorch.

Features & Usage

We are still working on the docs, and the docs will be published as soon as possible.

Here we list some highlight features of UtilsRL:

  • Extremely easy-to-use and research friendly argument parsing. UtilsRL.exp.argparse supports several handy features for research:
    • loading arguments from both yaml, json, python files and command line
    • nested argument parsing
  • Well-implemented torch modules for Reinforcement Learning
    • common network structures: MLP, CNN, RNN, Attention, Ensemble Blocks and etc
    • policy networks with various output distributions
    • normalizers implemented in nn.Module, benefiting saving/loading by taking advantage of state_dict
  • Powerful experiment loggers.
  • Super fast Prioritized Experience Replay (PER) buffer. By binding c++-implemented data structures, we boost the efficiency of PER up to 10 times

We provide two examples, namely training PPO on mujoco tasks and training Rainbow on atari tasks as illustrations for integrating UtilsRL into your workflow (see examples/)

Acknowledgements

We took inspiration for module design from tianshou and Polixir OfflineRL.

We also thank @YuRuiii and @momanto for their participation in code testing and performance benchmarking.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

UtilsRL-0.5.8.tar.gz (46.6 kB view details)

Uploaded Source

Built Distributions

UtilsRL-0.5.8-pp39-pypy39_pp73-win_amd64.whl (132.1 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.5.8-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (172.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.8-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (180.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.5.8-pp38-pypy38_pp73-win_amd64.whl (132.0 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.5.8-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (173.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.8-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (180.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.5.8-pp37-pypy37_pp73-win_amd64.whl (132.0 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.5.8-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (175.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.8-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (181.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.5.8-cp310-cp310-win_amd64.whl (132.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

UtilsRL-0.5.8-cp310-cp310-win32.whl (122.0 kB view details)

Uploaded CPython 3.10 Windows x86

UtilsRL-0.5.8-cp310-cp310-musllinux_1_1_x86_64.whl (694.8 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

UtilsRL-0.5.8-cp310-cp310-musllinux_1_1_i686.whl (755.4 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

UtilsRL-0.5.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (179.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.8-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (186.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

UtilsRL-0.5.8-cp39-cp39-win_amd64.whl (131.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

UtilsRL-0.5.8-cp39-cp39-win32.whl (122.2 kB view details)

Uploaded CPython 3.9 Windows x86

UtilsRL-0.5.8-cp39-cp39-musllinux_1_1_x86_64.whl (694.8 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

UtilsRL-0.5.8-cp39-cp39-musllinux_1_1_i686.whl (755.5 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

UtilsRL-0.5.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (179.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.8-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (187.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

UtilsRL-0.5.8-cp38-cp38-win_amd64.whl (132.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

UtilsRL-0.5.8-cp38-cp38-win32.whl (122.0 kB view details)

Uploaded CPython 3.8 Windows x86

UtilsRL-0.5.8-cp38-cp38-musllinux_1_1_x86_64.whl (694.6 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

UtilsRL-0.5.8-cp38-cp38-musllinux_1_1_i686.whl (755.0 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

UtilsRL-0.5.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (179.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.8-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (186.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

UtilsRL-0.5.8-cp37-cp37m-win_amd64.whl (132.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

UtilsRL-0.5.8-cp37-cp37m-win32.whl (122.9 kB view details)

Uploaded CPython 3.7m Windows x86

UtilsRL-0.5.8-cp37-cp37m-musllinux_1_1_x86_64.whl (697.9 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

UtilsRL-0.5.8-cp37-cp37m-musllinux_1_1_i686.whl (758.9 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

UtilsRL-0.5.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (180.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.8-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (190.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

File details

Details for the file UtilsRL-0.5.8.tar.gz.

File metadata

  • Download URL: UtilsRL-0.5.8.tar.gz
  • Upload date:
  • Size: 46.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for UtilsRL-0.5.8.tar.gz
Algorithm Hash digest
SHA256 c494454c919306a54e2d3c38453681835d5f4ef49cd161894d421589c028dee3
MD5 e0f7142c63c41b8635e868244137133b
BLAKE2b-256 b55aa0f79f4807910f8a9b5ced485836908b57c1105eb4348190a5ab4c9094c7

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.8-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.8-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d28957983f40b8b23f5ec5bd3e7332eb7b289b15f6b26883c11996f797e40d62
MD5 f153c3e311095ac501831ef57105faa1
BLAKE2b-256 d0ceecb3092623b7050ccc2d33f9476baec2cfd115b4e1fdb40745280eb003d7

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.8-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.8-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 73340a2224d51fd3b0051796e23a8759b0ae0ff311d865f887c133be346b6193
MD5 b44dbf866eca4c22f2e7a53684ca91cd
BLAKE2b-256 3fa594ff31ed1da445710b3f69b0e1b986c1dcd2a6dd9d7c3d730a0310d79044

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.8-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.8-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5cedf8f2500c341e181fed0d8566dfc845c851bd9b8c253be53dc7bb73c2ca09
MD5 f18eaefba13569f5a031ed33a6df5589
BLAKE2b-256 7f5d175a3dfb6f32393b98bfefecaae0dc6a31957019d1e77444f27df9ed44cd

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.8-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.8-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 0c1015dcc15f31affc6f22d37465a58c013c71c5f089ba4301c999c02dd72f01
MD5 236e5b29f130e1dee4f5a5fa314e575a
BLAKE2b-256 65de9f66a072e077ad4be968459000e7396f30a0cbb47d3c531bafb94129c6f0

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.8-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.8-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 76082849e8eeb0cdb067746a408f3f217f69e95717b611e37ec6860ebcf888d0
MD5 c0db9364e2b42d4774352498dbfda671
BLAKE2b-256 42f7a38ee754d2f2456ae513831736131f3078e6463d157f72fdb3af48b24264

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.8-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.8-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 921a0fb380d3c76386918d011b26a0bb4e853df51a767be94847795eb22f724e
MD5 ac5d440cc5289daafc6f852afd9445c1
BLAKE2b-256 69514db32ab6ace6d97b693a9b0c4d206d13403c7870345ffa216607dac1a9e4

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.8-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.8-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 514c3b709939fba3a8c34145303105cbdd2846658ef777466ea23ac89d993eec
MD5 0442b5f3bbf74d4266619307a12a7790
BLAKE2b-256 2f7bcb58b67477f449615866bb2c6f80ec9c7873d52258acba08a842977da13f

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.8-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.8-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e9179dccb3232ff9bd14f1ce4417cb99bb5512a67152d62d22256384443cee39
MD5 11cb9f40c7ad12a09cbd21f258f2f5f7
BLAKE2b-256 1aff7063b31afd45c7527406d657c3c7e7bae2d9b6de60241fa568cbf17fcf60

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.8-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.8-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 adf6672f5b8cdb2abd15bd04418ca2d5cc2c5501105cb073d416286128073d87
MD5 b23daa49ee4819fba281b2aa9c071ca1
BLAKE2b-256 76b65c00f3e8e528218be10410f96a4d7e8c26c78950997c759562b9e96549ea

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.8-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.8-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 132.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for UtilsRL-0.5.8-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 aa642541601415e3080e6fa45b5e641e2eec1c5501f65e0d4329bf93210758ee
MD5 9802b02543274b4cd0c8512db9408240
BLAKE2b-256 fda0a198da4120b8f27ca31cd70d0af2261378e2bba911c78fe6fdb81f98d8e0

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.8-cp310-cp310-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.8-cp310-cp310-win32.whl
  • Upload date:
  • Size: 122.0 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for UtilsRL-0.5.8-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 f339ad152906bcc1029df746054fd0d0f54a5e9e17e8cbb92deca376caaf4d1d
MD5 8e7c1af9f898e4c28630e8c386033d40
BLAKE2b-256 a2ef4375d05b705e9e6ca2b548aee22b75724b8f808b7abaed9bd2557c6a17b6

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.8-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.8-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8c1ce2a24061699912c8cc228c8121e658dff81a2bb865ea0feeb79b4e3cf0db
MD5 8d06adbbcfa79e8eeaae2ec6bbc6eab3
BLAKE2b-256 5179a8fa0059be183e09e26d2845fac41556d111fca00a8c9aa78b991ca51499

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.8-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.8-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 d454fe57d130e21b3e690ce2852efd7a60012212ecfbef60dd00ca2682915b63
MD5 47813e97013ad5e8ddd831ff7c86e776
BLAKE2b-256 bdf8a0a9224ffb0367ad2b36d9da2793a4befc9b91ace122eed981d24f53b406

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 068059b11769cca7edccf2034f655bf1602c2d60050ab3965e159ad95d799668
MD5 c1a082e26c0f12bebc094ab72c494979
BLAKE2b-256 08d7b3352c5acdf2abb093a5c728e85f45f1d8c4f84fbd41563094d1e127465e

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.8-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.8-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2333341180f4ee21ef4f70077cdf1b7512bdeb37803b2f3e7b89e5c0cd8a7e56
MD5 c6b9355a7d0d892dedba54bb5ca5b2be
BLAKE2b-256 56e7be21991b79f9eca2db7163dda47bc8c126631c6edab00025245b6c89af14

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.8-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.8-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 131.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for UtilsRL-0.5.8-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9ddece259e7fe2650f168e295c423ab96d5464f230cd8227422ba6ab483bca26
MD5 765f021e226237c366e7ddffeea6628b
BLAKE2b-256 d99b3f856b3b2482973166e20dd824a6dee5bd400efe31fd4d04ecd4b650faf6

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.8-cp39-cp39-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.8-cp39-cp39-win32.whl
  • Upload date:
  • Size: 122.2 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for UtilsRL-0.5.8-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 1be46d008db0268bf741beac13c397d58fd4a8a196cbe9db1bfcc106901cd8aa
MD5 7d783d23a46bde40d5ff8e06d69fe3e4
BLAKE2b-256 fa0c5e9a63255fd15528d4afdabaa0e38a11204f2e012f9dd06e9f48624ba490

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.8-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.8-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3c86afb3e3e9f4631237709bbb59b03d261129c4b7805e63b14190d2cdd00395
MD5 b7ede89cb1bea0334743096935e67536
BLAKE2b-256 f754febc8aa0cdb76195e55d0273b082adeaeb0aa0eeb695b225e37cfbf222df

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.8-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.8-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f291a50a622b637d3060384b67de046e3c4c11bab5c5f931c95bb33f6c05b635
MD5 57b1f039b2d9ae7faf5c0eb41874759f
BLAKE2b-256 849585887f28b221cca2c3746df90c7905eab27a6eb2e313490a410fb9b70ac4

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4568094887e25e51bc47e58e9aa6386fd4ff9c647b87f3ba743907268f699d50
MD5 253a5065c8211fe7cf54c5d24f65b22f
BLAKE2b-256 c6ea08ffa31d01a069fb60a011ed95160766a7a14043ad60f4da58c2ecdd8e87

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.8-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.8-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0e351512b21dd6641afc7a5f4ef7ebda440824a04e2fe9872f06e9013b5c9749
MD5 0e4e90a780103d154484542d5850f2f4
BLAKE2b-256 0ad2da9a36df4f109f1f0e6231df115d287bb0688d085590908c6e1c0873f819

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.8-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.8-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 132.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for UtilsRL-0.5.8-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 51d05a4940a0eb3b3f89a3d3448829c11920e1b5d930eaf5c6c45623b6442310
MD5 0ee2b022aafc0418f092a055f19f8ab5
BLAKE2b-256 f13dd94e3cb8f3a417a8816cbefc6b3fae21ae7de2fbe7c1c8cadce3feee3e3f

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.8-cp38-cp38-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.8-cp38-cp38-win32.whl
  • Upload date:
  • Size: 122.0 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for UtilsRL-0.5.8-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 7195e22c25fb501db4e48e9f65fa5e6fccc3c7cd74e8852844b3e9894f09bb62
MD5 628459d484ab017cde80ef2bc7dd3378
BLAKE2b-256 507410ad3678f3bd9dd9c5ab8963d243ab44a8557cab0a741b530fd50f68b6a5

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.8-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.8-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 47a7029fb633df45b778de365a234bed67927ee13eb773ebf5a52df08db54d30
MD5 05f8f4b03237c95966c5ee32f6397805
BLAKE2b-256 d588899160d6694e99689b6fa5af9af841e3bfe4b0a16d06ff099535106e9481

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.8-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.8-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 213563a05e4293e25b092b2e0eefdf43de3c4a5ee7e74b0fb1fa318ea2bda700
MD5 4897c8e42b0b21d1d4cc9f00ddbb77fe
BLAKE2b-256 b44b7cdcb711dbf6511dca8417130b04f8805d796223bc5b017a9c4e2909a0d5

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8bd484ca40b8cd2f1e183af90d6720c007e804c8959c6edee281093c84305427
MD5 b86fb381180cc8798a725efef3b0cfb8
BLAKE2b-256 4eed1f8edd8e0daeb97a602d02cf445296a17a7c71806e93f7fe40a84fe3e80d

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.8-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.8-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 25d912877fb27f349cc8645b237c1523fccdd4446fef52c508c706f66f40d719
MD5 74ce8ec8e2172d7bc13acc3cb0bbad78
BLAKE2b-256 c1901428558ce013fb5720cee9fee86e276d69314161990718679c93dd1f1ff8

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.8-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.8-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 132.7 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for UtilsRL-0.5.8-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 efb5a5e92832030a26ce02ffa0486d676330aa9b03f9546686a48483ae8fd067
MD5 03b97e47e2654c08fc116c76539f9d37
BLAKE2b-256 8ee3d8bed2285e24573a73973dd1ca7d731658a1025fce97ba5db01b7b4fa9d2

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.8-cp37-cp37m-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.8-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 122.9 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for UtilsRL-0.5.8-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 eaea3cc3daebd5f5f1ff48d739a0b46b2dfa613742fab50f187d70572bbf5ac3
MD5 9a96d588879d49179e941cf1c3a77350
BLAKE2b-256 a9c01e8aeeb56d49cb6fbcb955df10597537b402600bfa9b90244df3fe0a6ab4

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.8-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.8-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f938cd1c13f231189d99b85cda1d20a55ad777ded3e993620de4eb366b59cba6
MD5 bfb801afad94b9dcd4df483b4fb8799e
BLAKE2b-256 8f2883f2d21a55a86c6627a871905f08c13457db32b16e8b84dd1e6315ce0af5

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.8-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.8-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 6edfac9ebdcd8405857b895f8d1200ae95230cd722e17f70f5f8b4aeda712fc2
MD5 49e289e166acd86e6312c9c250de30a2
BLAKE2b-256 514fa67eff229300ea3cd33076391cf20cfa3322caf1cd006e6865556a3bf456

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eb6edf137f2fa51a9df91560320673a5bb20ae2500814fd3ba37403b1ba1ae8e
MD5 b45e986a303bb32ea18d2924b312ff44
BLAKE2b-256 6318dc4b7081afe588f7518d6c01e699c74f4d6e61e41332dd7d9a799924a2cb

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.8-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.8-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 75febc5ca6f1c4d4dfd6d1407ac3fbcbf1d8af830b06d2d7f855317b83e8500f
MD5 a3899dc68dd7d585036e4f2df5f360fc
BLAKE2b-256 b6b4896607ed6c25bff6bc931c142085958a418984153eb8122bc3cf70e4909e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page