Skip to main content

A python module desgined for RL logging, monitoring and experiments managing.

Project description

UtilsRL

UtilsRL is a reinforcement learning utility python package, which is designed for fast integration into other RL projects. Despite its lightweightness, it still provides a full set of functions needed for RL algorithms development.

Currently UtilsRL is maintained by researchers from LAMDA-RL group. Any bug report / feature request / improvement is appreciated.

Installation

You can install this package directly from pypi:

pip install UtilsRL

After installation, you may still need to configure some other dependencies based on your platform, such as PyTorch.

Features & Usage

We are still working on the docs, and the docs will be published as soon as possible.

Here we list some highlight features of UtilsRL:

  • Extremely easy-to-use and research friendly argument parsing. UtilsRL.exp.argparse supports several handy features for research:
    • loading arguments from both yaml, json, python files and command line
    • nested argument parsing
  • Well-implemented torch modules for Reinforcement Learning
    • common network structures: MLP, CNN, RNN, Attention, Ensemble Blocks and etc
    • policy networks with various output distributions
    • normalizers implemented in nn.Module, benefiting saving/loading by taking advantage of state_dict
  • Powerful experiment loggers.
  • Super fast Prioritized Experience Replay (PER) buffer. By binding c++-implemented data structures, we boost the efficiency of PER up to 10 times

We provide two examples, namely training PPO on mujoco tasks and training Rainbow on atari tasks as illustrations for integrating UtilsRL into your workflow (see examples/)

Acknowledgements

We took inspiration for module design from tianshou and Polixir OfflineRL.

We also thank @YuRuiii and @momanto for their participation in code testing and performance benchmarking.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

UtilsRL-0.6.1.tar.gz (42.5 kB view details)

Uploaded Source

Built Distributions

UtilsRL-0.6.1-pp39-pypy39_pp73-win_amd64.whl (128.5 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.6.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (169.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.6.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (177.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.6.1-pp38-pypy38_pp73-win_amd64.whl (128.3 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.6.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (171.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.6.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (177.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.6.1-pp37-pypy37_pp73-win_amd64.whl (128.3 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.6.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (172.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.6.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (178.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.6.1-cp310-cp310-win_amd64.whl (129.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

UtilsRL-0.6.1-cp310-cp310-win32.whl (118.0 kB view details)

Uploaded CPython 3.10 Windows x86

UtilsRL-0.6.1-cp310-cp310-musllinux_1_1_x86_64.whl (690.8 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

UtilsRL-0.6.1-cp310-cp310-musllinux_1_1_i686.whl (751.7 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

UtilsRL-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (175.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

UtilsRL-0.6.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (182.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

UtilsRL-0.6.1-cp39-cp39-win_amd64.whl (128.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

UtilsRL-0.6.1-cp39-cp39-win32.whl (118.1 kB view details)

Uploaded CPython 3.9 Windows x86

UtilsRL-0.6.1-cp39-cp39-musllinux_1_1_x86_64.whl (690.7 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

UtilsRL-0.6.1-cp39-cp39-musllinux_1_1_i686.whl (751.9 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

UtilsRL-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (175.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

UtilsRL-0.6.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (182.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

UtilsRL-0.6.1-cp38-cp38-win_amd64.whl (129.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

UtilsRL-0.6.1-cp38-cp38-win32.whl (118.1 kB view details)

Uploaded CPython 3.8 Windows x86

UtilsRL-0.6.1-cp38-cp38-musllinux_1_1_x86_64.whl (690.3 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

UtilsRL-0.6.1-cp38-cp38-musllinux_1_1_i686.whl (751.5 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

UtilsRL-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (175.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

UtilsRL-0.6.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (182.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

UtilsRL-0.6.1-cp37-cp37m-win_amd64.whl (129.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

UtilsRL-0.6.1-cp37-cp37m-win32.whl (119.2 kB view details)

Uploaded CPython 3.7m Windows x86

UtilsRL-0.6.1-cp37-cp37m-musllinux_1_1_x86_64.whl (694.3 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

UtilsRL-0.6.1-cp37-cp37m-musllinux_1_1_i686.whl (755.2 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

UtilsRL-0.6.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (177.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

UtilsRL-0.6.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (185.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

File details

Details for the file UtilsRL-0.6.1.tar.gz.

File metadata

  • Download URL: UtilsRL-0.6.1.tar.gz
  • Upload date:
  • Size: 42.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for UtilsRL-0.6.1.tar.gz
Algorithm Hash digest
SHA256 697ddc08c8864a947adefd2ef74d4396e35d35075f72e30c245b312d106994e2
MD5 7fcadb530cb63928102943fcc1ba7585
BLAKE2b-256 84e0f7f0fa6ba0b2501c9ea6ae33924577753f7f7fa7178acf76fb47e7c54ac0

See more details on using hashes here.

File details

Details for the file UtilsRL-0.6.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.6.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 5c6dbaa5b53dd0abc7b1c82560eb5b4aae1fa27c07a053af0456e938c0edb3cf
MD5 dc1e739588ce034a755c8032796363bf
BLAKE2b-256 448193e058815d15975ba8c0c8b5162b38e156cfdf427cc83de7c5d676297e7b

See more details on using hashes here.

File details

Details for the file UtilsRL-0.6.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.6.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a86cefbb2184f9c685ad59ea2e6fa5dd38d840f562db6ee5b4c5f4b969b29873
MD5 205f15d7640b7e9fed2ecd4d4b5c9980
BLAKE2b-256 e5c31c5ece9e014bfe29883d3204d96dddecc8331513b121d06dd276e8105c8d

See more details on using hashes here.

File details

Details for the file UtilsRL-0.6.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.6.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ae36d0c988cc03f897eeff57198652a69ea0c0fcc64e0d4180819ab69ede0acb
MD5 db8cfe27aabeae227787a4a5a339e11f
BLAKE2b-256 62f7954612a5dfc98f53c407d72577abfbc81fa87f892cfaada89c189872500d

See more details on using hashes here.

File details

Details for the file UtilsRL-0.6.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.6.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 84905de6322f15c8fc11c68dc013ebcbe6e3b686f355290f3a3e514e401bbb13
MD5 925c7f99ba277bdc765adfdbb5c08ce4
BLAKE2b-256 1532ebd53bba1ab2def5f7235acebf29d25826ed2a4a23191d9396e8d5246a43

See more details on using hashes here.

File details

Details for the file UtilsRL-0.6.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.6.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6ac8317b91aece9744ac2ce7651d6968f09301a726e86ab934fe46a20cfef3cb
MD5 7c8212321dc1070730bd6862b004359f
BLAKE2b-256 4332bede8880ce8322f2f95306710e946a535b6919ab9fc1f1189bcf8d2c4609

See more details on using hashes here.

File details

Details for the file UtilsRL-0.6.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.6.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8c106fdf92e3c1d829fdf8da22ac695b201a2657867adf7234a8cc08781acfe5
MD5 89bc9de42b2bbfe5895a1648271821be
BLAKE2b-256 d1384839bef838d6a51ad0545f9f6b2d326a585945650e9acfdef8dd49fae559

See more details on using hashes here.

File details

Details for the file UtilsRL-0.6.1-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.6.1-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 602381e75fbf8dcb6a1d1de51666dddda83ca7647028ce52d83ea2cf5d5bcd49
MD5 3ee62b11a5f28e62eadb6e55f032105b
BLAKE2b-256 64dcfd576942e6cbadc89dab6c05a8621a211de3d51103e683b0543f48c6e73c

See more details on using hashes here.

File details

Details for the file UtilsRL-0.6.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.6.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6f32d508a900582414af48dbd455c5c43a5737908aebba344036303a6ba422df
MD5 a11511166a758fcc9fe282e636d6603f
BLAKE2b-256 4b63e1bba0e1c914edac8cd54bdb8ade5ab5c41a13034b7b8ea062c8e05246fa

See more details on using hashes here.

File details

Details for the file UtilsRL-0.6.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.6.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ecb73712ac1bbaf81cc99df004cd2cc06aa7f335250373a600da5db946ed5574
MD5 fff39f358da8edce961e313c27d586a7
BLAKE2b-256 c6ac02d1396122bd7c16e22bf0cc430b9afc265a08402a357c0e1ee816b68fe7

See more details on using hashes here.

File details

Details for the file UtilsRL-0.6.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.6.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 129.4 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for UtilsRL-0.6.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7bbbb6a2473fafddcafdeb5d2c7282f16698247109c51b5c9213767f68245ab8
MD5 d40d8d745db61b71c2ee847a8964ca34
BLAKE2b-256 6cbb8a1a596b4ae18f2a1ede9577efc6c71d4531e5244a85cb8ea831a436b94a

See more details on using hashes here.

File details

Details for the file UtilsRL-0.6.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: UtilsRL-0.6.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 118.0 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for UtilsRL-0.6.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 5de2a07a7641fe96a9e5e7c2034ee1adb0130ceaf4560c7aea2235657b15f99b
MD5 b43dfd533506fdf8bb90f7c3bf8a5b77
BLAKE2b-256 3d092c7a1f68aec486efc844a83e9ba993121899fd9ec0f4744cdb98a53b95cb

See more details on using hashes here.

File details

Details for the file UtilsRL-0.6.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.6.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e691faf8b3ce44cb4fec73d36a6c3bb327190fba82256b6aea2b0890b46ce848
MD5 2dcdd45360453e0d097a4bded6ac2fd0
BLAKE2b-256 b9ea77b84b6a7334e6c1dcba91c2bb8081da4913e789e3918696f40f9ec8e355

See more details on using hashes here.

File details

Details for the file UtilsRL-0.6.1-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.6.1-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 fb9dc25c1b0207cb38f98143f51fed1739df4a566fabc4ba65da83a28f11dfcd
MD5 f688c73fa8888cb065f3b410c31b0063
BLAKE2b-256 00770dd81a9f5d680d1a221401fb77d8d89c66242bb4c9b1550f5b81f8249084

See more details on using hashes here.

File details

Details for the file UtilsRL-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f824c9ce82791cc827c77e4335fa75b6b90cc83aca6ad4b95ee44d2acea4fcee
MD5 9c11465a44d9afca388af160f06d6d8e
BLAKE2b-256 299bc25fe28e5bb86155faf50a75ce067d4410c2b6bba7246c046aa3c702e77a

See more details on using hashes here.

File details

Details for the file UtilsRL-0.6.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.6.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f66d4ce0bc4caef4253d1cb625b821fe37a0df1dea35f713eff7f4279578083e
MD5 0d2b57bdeaf72c4e11fffc03738d9cfe
BLAKE2b-256 8fe26fd6b7a36d6c57e46f232cf6b12bedda6491c32a88828c1c5e6ca7810697

See more details on using hashes here.

File details

Details for the file UtilsRL-0.6.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.6.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 128.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for UtilsRL-0.6.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 06adce96608f9d93baf2b6d66e5645ab9898a2e253636b760bead722db8286fb
MD5 a80cdd0c45d57a584da383654a6b0565
BLAKE2b-256 07b709f47dcf8382bf433479a3f6a3d2b6e2f04c8620ac3377301aad550820a9

See more details on using hashes here.

File details

Details for the file UtilsRL-0.6.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: UtilsRL-0.6.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 118.1 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for UtilsRL-0.6.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 e606fa4a8f27bc804484ce142d67cca966646b484202c525423e7a3a4f3db5d2
MD5 397c755faf5ecd9ecb1c9a916c54153e
BLAKE2b-256 3685d9dd3ae85d7d9d61ca380e2d828dcc9ff8baf34ca4bdcafb092f21740f64

See more details on using hashes here.

File details

Details for the file UtilsRL-0.6.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.6.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 42e2cecf489c3fbf8d54ae0618b470b58e22f4b56f38669c15abad075727b924
MD5 21ff800680de11a85a9fbc9c1165516e
BLAKE2b-256 e49e970c261a367f2fa2a83b833a2dbc001aa873fe3edb28d4030d36a1eaa34e

See more details on using hashes here.

File details

Details for the file UtilsRL-0.6.1-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.6.1-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f08e32524e0b2eac3794c37b1f29c2a386f1c3a91d7ce9c6966354db75ba177e
MD5 82ace603bac7cf346d9cf85c88dc9b25
BLAKE2b-256 11e147a8cdde749b7d7d5af1fb6e628033898f2abdf8cd565bb9c43ab1de0fad

See more details on using hashes here.

File details

Details for the file UtilsRL-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 65ca673ab6f3608485f0fe42a2214732ec2ac963a5005f698ae9110f352941c1
MD5 15f24ad2dfc66cada3f1e3664a6871db
BLAKE2b-256 22fdd8d0d7abc9316dfacbb7e013d9134977d47a36452ab7e839e889b4b2ec26

See more details on using hashes here.

File details

Details for the file UtilsRL-0.6.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.6.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3a1d3bcc9f4977dc15a8ff9c41cbe74a2c90339b7176681b981d9b5921056f95
MD5 a0a95ef1a62e1557fedbf37f6e60d25b
BLAKE2b-256 75de6488bfd5be69e7b81d181bbb8f4adad6c1848093956d837bd3aaa7442d6d

See more details on using hashes here.

File details

Details for the file UtilsRL-0.6.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.6.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 129.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for UtilsRL-0.6.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ed5756c2038f2b44b8571bc572863918105fdede7fb37dff0bdcfe29a30f8747
MD5 3b11b626980085525b59aac22670193f
BLAKE2b-256 850031395b013cc884baccad54237c5b198a83890cb8b0d35bd40833e53f162b

See more details on using hashes here.

File details

Details for the file UtilsRL-0.6.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: UtilsRL-0.6.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 118.1 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for UtilsRL-0.6.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 ddd9af4130bda8a1a4a84fc2a35cafb3c462fa15d84994ff11d2f9e5c915aa5b
MD5 fc9abfe017e6783bf82f41d7d69e687f
BLAKE2b-256 9db5361d2397a4703c7a706877b94c546e88b8ce58fa86c66c42850f57380209

See more details on using hashes here.

File details

Details for the file UtilsRL-0.6.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.6.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1e0e7170aec35fd6aa4f006778519f263e3c9d87cca8daa60007e1c29af41bca
MD5 d01385899b59ca2b48376dba16bae5c7
BLAKE2b-256 6d14c5a17f769fee5e9341327cde59f70662c208653f27e8711c12823b708c27

See more details on using hashes here.

File details

Details for the file UtilsRL-0.6.1-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.6.1-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 162489a631219a9be6253c664a3cf17dfcf73c9e525bb3eec984ae395add25d0
MD5 378b54e890d1b0cd6a6c594c6328fb9f
BLAKE2b-256 d4cd1a63d967972e89eae568f87ed0c488f27727ffd1d08bde1d18fef9f51aec

See more details on using hashes here.

File details

Details for the file UtilsRL-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c172e620257f784820f84dd18a39f5e60927275756c46be5db3e77bbcf29db75
MD5 2f58d7b641036a722b522c2f6c6c93c2
BLAKE2b-256 81f8bd2dba5645a8e9c21330932a42dff45ccfe17122ab1a0499e4efcc3de70b

See more details on using hashes here.

File details

Details for the file UtilsRL-0.6.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.6.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d57911e2dcdb74356af4128b267a29fd81b8d2e0601cae272d8cc8c272fa3a29
MD5 dfa6d3f4e7eb1a6610cc771417c00a23
BLAKE2b-256 7d19e67bd0b1e5a3bd54f19b0df741b11fe50dbc90df70c51e48f0ea76e20961

See more details on using hashes here.

File details

Details for the file UtilsRL-0.6.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.6.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 129.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for UtilsRL-0.6.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 78d0690e5c81561f3497aa192784e8a3d63dcaa31a8574e9d253caaaa25606ef
MD5 68119677ac8ce3689d057a2ac14ce5da
BLAKE2b-256 5a139891452b45cd29f2ea1ed970df07d7040dadfbe9f1a6cd28ddde2c4b958c

See more details on using hashes here.

File details

Details for the file UtilsRL-0.6.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: UtilsRL-0.6.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 119.2 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for UtilsRL-0.6.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 07b347c2204adea781596a745a853d0d033ce7c616806e6fb17a2ed3abefa4bc
MD5 9b0cfdcf8165652adecfd4fab9b8b578
BLAKE2b-256 bca30321d6d43b9593519e1d1d2a99c4ad11149bf2e7f03383d5c0688b155480

See more details on using hashes here.

File details

Details for the file UtilsRL-0.6.1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.6.1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3a8f98591a33948ded803d01229940205c4d910c6ea1e43cb3ae5bfd568a403f
MD5 be33d82b13339566179974e6d888180a
BLAKE2b-256 ca432a2b273c75564495c606132e79442bdca1a586bcb99298dd74151d0cc18a

See more details on using hashes here.

File details

Details for the file UtilsRL-0.6.1-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.6.1-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ced2db76c105e0995497c3fad8b55a5e0eb203edbcc763fe7dc7bf38de985d30
MD5 f5c08da4d0efe49789dd237da144a46b
BLAKE2b-256 e32b3b5c072c178abf9eb669acda40e14a1fe8f765ec8ef7b5f05a6c143039cc

See more details on using hashes here.

File details

Details for the file UtilsRL-0.6.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.6.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2340542e3774884b6066ea7df549223de69b8b3f031c626af63974ceb3eb0cd9
MD5 39c51bfdf559aafad1d6217ad172a000
BLAKE2b-256 18088f0ac1e26fc77e7e90c36c1cb37c45416e77db515e7b6bb80d4d867a1afa

See more details on using hashes here.

File details

Details for the file UtilsRL-0.6.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.6.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c993fd9bf2d9e243b0ff46240fbd80b2e257415649bcff9b3b8f969cf3f6b542
MD5 d746be5af226b6ebb562e3420b5d66d4
BLAKE2b-256 88b0d8506e646e05ec300ad6d42cf657559fa76720476ed4a67a1e599802975e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page