Skip to main content

A fast particle tracking code for plasma accelerators.

Project description

Wake-T: A fast tracking code for plasma accelerators.

tests badge Documentation Status CodeFactor PyPI License

Highlight image

Overview

Wake-T (Wakefield particle Tracker) is a tracking code for laser- and beam-driven plasma wakefield accelerators which aims at providing a fast alternative to Particle-in-Cell (PIC) simulations. Instead of relying on the computationally-expensive PIC algorithm for simulating the plasma wakefields and the beam evolution, Wake-T uses a Runge-Kutta solver to track the evolution of the beam electrons in the wakefields, which, at the same time, are computed from reduced models. This allows for a significant speed-up of the simulations, which can be performed in a matter of seconds instead or hours/days. An overview of this strategy can be seen in the following figure:

Wake-T logo

In addition to plasma-acceleration stages, Wake-T can also simulate active plasma lenses, drifts, dipoles, quadrupoles and sextupoles, allowing for the simulation of complex beamlines. The tracking along the drifts and magnets is performed using second-order transfer matrices, and CSR effects can be included by using a 1D model. This matrix approach and the CSR model are based on a streamlined version of the Ocelot implementation.

Installation

If you don't have Python 3 already installed, download the latest version, for example, from here. It is recommended to create a virtual environment for Wake-T (you can see how here, for example). Remember to activate the new environment before proceeding with the installation.

Installing from PyPI

Simply type

pip install Wake-T

in your terminal.

Manual installation from GitHub

  1. Clone this repository to a directory in your computer using git
git clone https://github.com/AngelFP/Wake-T.git

or simply download the code from here and unzip it.

  1. If you haven't already, open a terminal in the newly created folder and perform the installation with
pip install .

References

[1] - P. Baxevanis and G. Stupakov, Novel fast simulation technique for axisymmetric plasma wakefield acceleration configurations in the blowout regime, Phys. Rev. Accel. Beams 21, 071301 (2018).

[2] - A. Ferran Pousa et al., Wake-T: a fast particle tracking code for plasma-based accelerators, J. Phys.: Conf. Ser. 1350 012056 (2019).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wake_t-0.8.0.tar.gz (107.7 kB view details)

Uploaded Source

Built Distribution

Wake_T-0.8.0-py3-none-any.whl (122.0 kB view details)

Uploaded Python 3

File details

Details for the file wake_t-0.8.0.tar.gz.

File metadata

  • Download URL: wake_t-0.8.0.tar.gz
  • Upload date:
  • Size: 107.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for wake_t-0.8.0.tar.gz
Algorithm Hash digest
SHA256 ee2eba5752331c8ba949f17a593179521e281e10f41e66bf9f5da03a155da941
MD5 946280c608af21db14019199aae0812e
BLAKE2b-256 d41295e191d84c36bc9598897c56ec8d39b1e360a5f6227ff6ad3727bf3a94ce

See more details on using hashes here.

File details

Details for the file Wake_T-0.8.0-py3-none-any.whl.

File metadata

  • Download URL: Wake_T-0.8.0-py3-none-any.whl
  • Upload date:
  • Size: 122.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for Wake_T-0.8.0-py3-none-any.whl
Algorithm Hash digest
SHA256 7f645790bf2147f4f67acaa1da1e0f4f3f0a98fb2b5cc15d5142cd789a4cc15c
MD5 869365af4ae172c833ff343fd4db685a
BLAKE2b-256 44cb4977e4c6588af164059ecad21013e3e16456afbc737a63724b4ca63ea3ad

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page