Wrapper Package for LipGan Project
Project description
Wav2Lip
Wav2Lip: Accurately Lip-syncing Videos In The Wild
Wav2Lip wrapper pypi package code for this package is available at: https://github.com/mehdihosseinimoghadam/Wav2Lip also original code from writers of Wav2Lip is available at: https://github.com/mehdihosseinimoghadam/Wav2Lip
Prerequisites
Python 3.6
- ffmpeg:
sudo apt-get install ffmpeg
- Face detection pre-trained model should be downloaded to
face_detection/detection/sfd/s3fd.pth
. Alternative link if the above does not work.
Getting the weights
Model | Description | Link to the model |
---|---|---|
Wav2Lip | Highly accurate lip-sync | Link |
Wav2Lip + GAN | Slightly inferior lip-sync, but better visual quality | Link |
Expert Discriminator | Weights of the expert discriminator | Link |
Visual Quality Discriminator | Weights of the visual disc trained in a GAN setup | Link |
Features
- Easy to use
- Fast
- Accurate
Usage
First of all get the weights:
wget "https://www.adrianbulat.com/downloads/python-fan/s3fd-619a316812.pth" -O "/usr/local/lib/python3.7/dist-packages/Wav2Lip/face_detection/detection/sfd/gfs3fd.pth"
gdown https://drive.google.com/uc?id=1jQOJInh8cDj2mrbUgcQxhCc7rpAgyV1-
After pip installation add these directories:
mkdir /usr/local/lib/python3.7/dist-packages/Wav2Lip/results
mkdir /usr/local/lib/python3.7/dist-packages/Wav2Lip/temp
mkdir /usr/local/lib/python3.7/dist-packages/Wav2Lip/checkpoints
Then add weights:
mv /content/wav2lip_gan.pth /usr/local/lib/python3.7/dist-packages/Wav2Lip/checkpoints/
&&
cd /usr/local/lib/python3.7/dist-packages/Wav2Lip
Import Wav2Lip wrapper function:
from Wav2Lip.wrapper_app import main
main("/path/to/wav/file","path/to/image")
The resulting video would be in
/usr/local/lib/python3.7/dist-packages/Wav2Lip/results/result_voice.mp4
If you run in colab you can use this script:
from IPython.display import HTML
from base64 import b64encode
mp4 = open('/usr/local/lib/python3.7/dist-packages/Wav2Lip/results/result_voice.mp4','rb').read()
data_url = "data:video/mp4;base64," + b64encode(mp4).decode()
HTML("""
<video width=400 controls>
<source src="%s" type="video/mp4">
</video>
""" % data_url)
Authors
Name | Github | Home Page |
---|---|---|
Mehdi Hosseini Moghadam | https://github.com/mehdihosseinimoghadam | https://www.linkedin.com/in/mehdi-hosseini-moghadam-384912198/ |
Hanie Poursina | https://github.com/HaniePoursina | http://haniepoursina.ir/ |
Github
Source is avaliable at https://github.com/mehdihosseinimoghadam/Wav2Lip
License
MIT
Free Software, Hell Yeah!
Acknowledgements
This is only a wrapper package and the main code of Wav2Lip can be found in https://github.com/mehdihosseinimoghadam/Wav2Lip
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file Wav2Lipy-0.0.1.tar.gz
.
File metadata
- Download URL: Wav2Lipy-0.0.1.tar.gz
- Upload date:
- Size: 37.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fa4451c3ee39176a61332807f94d94604feeb2783b4c2378de5f4b7f24b89a14 |
|
MD5 | d3c87ebdea51b17f7c703b91fe19a138 |
|
BLAKE2b-256 | 1d7b1b9215e7704966d7fc249894ee906c78b6713f4f21bd20f96e9601273c9f |
File details
Details for the file Wav2Lipy-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: Wav2Lipy-0.0.1-py3-none-any.whl
- Upload date:
- Size: 43.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9a55248c01b3edc3114387de252412dc12a3a38753691bab18588a4b94181954 |
|
MD5 | 47fdf52f985eb8ede4e164241d90d2d4 |
|
BLAKE2b-256 | 1c247ec448a31c071b038fbd87f66ffd1f48c762b79fc88c5a3808936cc4018c |