Skip to main content

WeTextProcessing, including TN & ITN

Project description

Text Normalization & Inverse Text Normalization

0. Brief Introduction

- **Must Read Doc** (In Chinese): https://mp.weixin.qq.com/s/q_11lck78qcjylHCi6wVsQ

WeTextProcessing: Production First & Production Ready Text Processing Toolkit

0.1 Text Normalization

Cover

0.2 Inverse Text Normalization

Cover

1. How To Use

1.1 Quick Start:

# install
pip install WeTextProcessing

Command-usage:

wetn --text "2.5平方电线"
weitn --text "二点五平方电线"

Python usage:

# tn usage
>>> from tn.chinese.normalizer import Normalizer
>>> normalizer = Normalizer()
>>> normalizer.normalize("2.5平方电线")
# itn usage
>>> from itn.chinese.inverse_normalizer import InverseNormalizer
>>> invnormalizer = InverseNormalizer()
>>> invnormalizer.normalize("二点五平方电线")

1.2 Advanced Usage:

DIY your own rules && Deploy WeTextProcessing with cpp runtime !!

For users who want modifications and adapt tn/itn rules to fix badcase, please try:

git clone https://github.com/wenet-e2e/WeTextProcessing.git
cd WeTextProcessing
# `overwrite_cache` will rebuild all rules according to
#   your modifications on tn/chinese/rules/xx.py (itn/chinese/rules/xx.py).
#   After rebuild, you can find new far files at `$PWD/tn` and `$PWD/itn`.
python -m tn --text "2.5平方电线" --overwrite_cache
python -m itn --text "二点五平方电线" --overwrite_cache

Once you successfully rebuild your rules, you can deploy them either with your installed pypi packages:

# tn usage
>>> from tn.chinese.normalizer import Normalizer
>>> normalizer = Normalizer(cache_dir="PATH_TO_GIT_CLONED_WETEXTPROCESSING/tn")
>>> normalizer.normalize("2.5平方电线")
# itn usage
>>> from itn.chinese.inverse_normalizer import InverseNormalizer
>>> invnormalizer = InverseNormalizer(cache_dir="PATH_TO_GIT_CLONED_WETEXTPROCESSING/itn")
>>> invnormalizer.normalize("二点五平方电线")

Or with cpp runtime:

cmake -B build -S runtime -DCMAKE_BUILD_TYPE=Release
cmake --build build
# tn usage
cache_dir=PATH_TO_GIT_CLONED_WETEXTPROCESSING/tn
./build/processor_main --tagger $cache_dir/zh_tn_tagger.fst --verbalizer $cache_dir/zh_tn_verbalizer.fst --text "2.5平方电线"
# itn usage
cache_dir=PATH_TO_GIT_CLONED_WETEXTPROCESSING/itn
./build/processor_main --tagger $cache_dir/zh_itn_tagger.fst --verbalizer $cache_dir/zh_itn_verbalizer.fst --text "二点五平方电线"

2. TN Pipeline

Please refer to TN.README

3. ITN Pipeline

Please refer to ITN.README

Discussion & Communication

For Chinese users, you can aslo scan the QR code on the left to follow our offical account of WeNet. We created a WeChat group for better discussion and quicker response. Please scan the personal QR code on the right, and the guy is responsible for inviting you to the chat group.

Or you can directly discuss on Github Issues.

Acknowledge

  1. Thank the authors of foundational libraries like OpenFst & Pynini.
  2. Thank NeMo team & NeMo open-source community.
  3. Thank Zhenxiang Ma, Jiayu Du, and SpeechColab organization.
  4. Referred Pynini for reading the FAR, and printing the shortest path of a lattice in the C++ runtime.
  5. Referred TN of NeMo for the data to build the tagger graph.
  6. Referred ITN of chinese_text_normalization for the data to build the tagger graph.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

WeTextProcessing-0.1.6.tar.gz (578.0 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

WeTextProcessing-0.1.6-py3-none-any.whl (620.8 kB view details)

Uploaded Python 3

File details

Details for the file WeTextProcessing-0.1.6.tar.gz.

File metadata

  • Download URL: WeTextProcessing-0.1.6.tar.gz
  • Upload date:
  • Size: 578.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for WeTextProcessing-0.1.6.tar.gz
Algorithm Hash digest
SHA256 499db4519a880b472a6ac65a36a664350e49cccc30c0e4796d62aa7304806eae
MD5 42be11db409200a5cc24451a07763dbc
BLAKE2b-256 d82b55bb40e76399fcc425eac2c81b4121e7e3dcbd25416732aed47c1e62e542

See more details on using hashes here.

File details

Details for the file WeTextProcessing-0.1.6-py3-none-any.whl.

File metadata

File hashes

Hashes for WeTextProcessing-0.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 f89b7628d9f13a92c3dc1bb0bf33ee7389afa167e77acbf9ef798fc380168163
MD5 4614a0b779eca713a87731a1a3fb1ba3
BLAKE2b-256 ab79d50049db0de560700602ffe084df581fb49974a3f1a53b2d57f1717708b6

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page