Skip to main content

A Python toolbox for performing Black-Box Optimization.

Project description

XBBO

XBBO is an an effective, modular, reproducible and flexible black-box optimization (BBO) codebase, which aims to provide a common framework and benchmark for the BBO community.

Installation

Python >= 3.7 is required.

For PIP

pip install xbbo

For Development

git clone REPO_URL
cd XBBO
# install requirements
pip install -r ./requirements.txt
# set root path
export PYTHONPATH=$PYTHONPATH:/Path/to/XBBO

Quick Start

note:XBBO default minimize black box function.

Bayesian Optimization example

Script path is ./examples/optimize_api_rosenbrock_bo.py

# define black box function
blackbox_func = rosenbrock_2d_hard
# define search space
cs = build_space_hard(rng)
# define black box optimizer
hpopt = BO(space=cs,
            objective_function=blackbox_func,
            seed=rng.randint(MAXINT),
            suggest_limit=MAX_CALL,
            initial_design='sobol',
            surrogate='gp',
            acq_opt='rs_ls')

# ---- Use minimize API ----
hpopt.optimize()
best_value, best_config = hpopt.trials.get_best()
print('Find best value:{}'.format(best_value))
print('Best Config:{}'.format(best_config))

This example shows how to use this .optimize() api to easily and quickly optimize a black box function.

Script path is ./examples/rosenbrock_bo.py

def build_space(rng):
    cs = ConfigurationSpace(seed=rng.randint(MAXINT))
    x0 = UniformFloatHyperparameter("x0", -5, 10, default_value=-3)
    x1 = UniformFloatHyperparameter("x1", -5, 10, default_value=-4)
    cs.add_hyperparameters([x0, x1])
    return cs

rng = np.random.RandomState(42)
# define black box function
blackbox_func = rosenbrock_2d
# define search space
cs = build_space(rng)
# define black box optimizer
hpopt = BO(config_spaces=cs, seed=rng.randint(MAXINT), suggest_limit=MAX_CALL)
# Example call of the black-box function
def_value = blackbox_func(cs.get_default_configuration())
print("Default Value: %.2f" % def_value)
# ---- Begin BO-loop ----
for i in range(MAX_CALL):
    # suggest
    trial_list = hpopt.suggest()
    # evaluate 
    value = blackbox_func(trial_list[0].config_dict)
    # observe
    trial_list[0].add_observe_value(observe_value=value)
    hpopt.observe(trial_list=trial_list)
  
    print(value)  

This example shows how to use .ask().tell() api to quickly optimize a black box function.

All examples can be found in examples/ folder.

Supported Algorithms

  • Transfer

    • TST-R
    • TAF
    • TAF(RGPE)
    • RMoGP
    • RGPE(mean)
  • Optimizer

    • BORE optimizer
    • Anneal
    • DE
    • CMA
    • NSGA
    • Regularized EA
    • PBT
    • TuRBO
  • multi-fidelity

    • HyperBand
    • BOHB
    • DEHB
    • MFES-BO

Benchmark

Run comparison/xbbo_benchmark.py to benchmark general BBO optimizer.

Method Minimum Best minimum Mean f_calls to min Std f_calls to min Fastest f_calls to min
XBBO(rs) 0.684+/-0.248 0.399 110.4 60.511 17
XBBO(bo-gp) 0.398+/-0.000 0.398 138.5 33.685 90
XBBO(tpe) 0.519+/-0.119 0.398 191.4 12.035 162
XBBO(anneal) 0.404+/-0.005 0.399 164.5 29.032 92
XBBO(cma-es) 0.398+/-0.000 0.398 191.3 8.391 174
XBBO(rea) 0.425+/-0.026 0.399 115.8 47.743 56
XBBO(de) 0.465+/-0.065 0.399 163.5 27.969 99
XBBO(turbo-1) 0.398+/-0.000 0.398 110.3 46.596 46
XBBO(turbo-2) 0.398+/-0.000 0.398 130.7 48.57 68
XBBO(bore) 0.408+/-0.006 0.401 117.4 58.114 38
XBBO(cem) 1.875+/-2.090 0.398 144.8 60.834 36

Compare other bbo library

Here you can comparison with commonly used and well-known Hyperparameter Optimization (HPO) packages:

SMAC3

hyperopt

scikit-optimize

TuRBO

Bayesian Optimization

DEHB、HpBandSter

OpenBox

Hypermapper

Algorithms notes

review

TODO

  • parallel
  • multi-fidelity

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

XBBO-0.2.0.tar.gz (114.7 kB view details)

Uploaded Source

Built Distribution

XBBO-0.2.0-py2.py3-none-any.whl (166.4 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file XBBO-0.2.0.tar.gz.

File metadata

  • Download URL: XBBO-0.2.0.tar.gz
  • Upload date:
  • Size: 114.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.7.13

File hashes

Hashes for XBBO-0.2.0.tar.gz
Algorithm Hash digest
SHA256 2b1b7f7d2ff1a971c6b9a96f314eb6d8308eb443c7bdb2ee84971153200ce9ca
MD5 21a0092f0c0c7dbc4d51350a6f40f73f
BLAKE2b-256 a7fc8fdc762d5d150dc363b67dbdf875f6767b06b7a99b5b2c6af273a1ecc724

See more details on using hashes here.

File details

Details for the file XBBO-0.2.0-py2.py3-none-any.whl.

File metadata

  • Download URL: XBBO-0.2.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 166.4 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.7.13

File hashes

Hashes for XBBO-0.2.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 9ad1359ca3438d322b95e00650ecc7afa82863b26bfe75e6ed673f003f340291
MD5 4bc4dcbaad0bc01feeb06211022b4702
BLAKE2b-256 7e595844fe772a142627a9065b40e089ee50d3f9e2ec2100771e0fb8915a8ba6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page