Skip to main content

The Algorithm that find any relationship between data in equation form

Project description

Xgression

The Dynamic and Explainable Regression/Classification Solution

Author : Thaphon Chinnakornsakul

Xgression is the solution to find relationships between data to an equation by constructing computational tree that represent the steps of calculation from inputs to an output of algorithm then modify the tree with various operator to find the optimal solution. As the result Xgression can perform many forms of regression without setting initial equations or parameters

Keywords : Theoretical Computer Science, Artificial Intelligence and Machine Learning, Computational Mathematics, Regression, Optimization, Algorithm, Explainable Machine Learning, Computational Tree, Predictive Modelling, Classification

DOI: https://doi.org/10.21203/rs.3.rs-2390968/v1

Reference: [1] Nocedal, Jorge; Wright, Stephen J. (2006), Numerical Optimization (2nd ed.), Berlin, New York: Springer-Verlag, ISBN 978-0-387-30303-1 [2] Python Software Foundation. Python Language Reference, version 3.11. Available at http://www.python.org [3] Meurer A, Smith CP, Paprocki M, Čertík O, Kirpichev SB, Rocklin M, Kumar A, Ivanov S, Moore JK, Singh S, Rathnayake T, Vig S, Granger BE, Muller RP, Bonazzi F, Gupta H, Vats S, Johansson F, Pedregosa F, Curry MJ, Terrel AR, Roučka Š, Saboo A, Fernando I, Kulal S, Cimrman R, Scopatz A. (2017) SymPy: symbolic computing in Python. PeerJ Computer Science 3:e103https://doi.org/10.7717/peerj-cs.103 [4] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E.A. Quintero, Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. (2020) SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17(3), 261-272.4 [5] Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array programming with NumPy. Nature 585, 357–362 (2020). DOI: 10.1038/s41586-020-2649-2. (Publisher link). [6] Visit This Predict Diabetes Kaggle for testing data

Note; The Code is still Unclear and unrefactored. i just wrote what i think

I will definitely refactor this after i pass the university interviewing!!

Project details


Release history Release notifications | RSS feed

This version

2.6

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Xgression_tk-2.6.tar.gz (4.9 kB view details)

Uploaded Source

Built Distribution

Xgression_tk-2.6-py3-none-any.whl (5.3 kB view details)

Uploaded Python 3

File details

Details for the file Xgression_tk-2.6.tar.gz.

File metadata

  • Download URL: Xgression_tk-2.6.tar.gz
  • Upload date:
  • Size: 4.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for Xgression_tk-2.6.tar.gz
Algorithm Hash digest
SHA256 a015640d2802616594db1e7de589df738cd6db39fcb9c24d1da3c03cc0bc37e2
MD5 8c1aa3eb3cdf4e8361a9d5db80cba509
BLAKE2b-256 c8b4eb2b3c444719bfc43ef46e8b0b1dccc66220164aa7d63caf258f4895c0bf

See more details on using hashes here.

File details

Details for the file Xgression_tk-2.6-py3-none-any.whl.

File metadata

  • Download URL: Xgression_tk-2.6-py3-none-any.whl
  • Upload date:
  • Size: 5.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for Xgression_tk-2.6-py3-none-any.whl
Algorithm Hash digest
SHA256 573060392064db0e972812ea6c7ab46e6b7c97e152eb3a377e38bf0ca1fdae01
MD5 43616d274be6156c47ede9adbeec819c
BLAKE2b-256 da982abbfb6dfa0123e6311b5e5e46dd7a83d93f2eafa73772ceefc722a068a1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page