Skip to main content

A package for building molecular dynamics inputs for SPONGE

Project description

Xponge

简介

Xponge是由Python编写的轻量化能高度自定义的分子动力学模拟的前后处理工具。Python版本需大于3.6,安装直接使用pip即可

pip install Xponge

安装成功以后,在Python脚本中直接import即可使用

import Xponge

Xponge最基本的功能除了依赖于Python的标准库外,还依赖了numpy、pubchempy,这两个包将会在pip install Xponge时将会自动安装,而一些更复杂的功能可能包括其他模块,这些模块需要自行安装。

Xponge目前还处于早期开发版本,此处介绍一些基本功能,不代表最终版本效果。

力场生成

A. 现有力场

A1. 现有残基,无初始坐标文件

  • 引入现有力场
import Xponge
import Xponge.forcefield.AMBER.ff14SB

会得到包含参考文献的打印信息

Reference for ff14SB.py:
  James A. Maier, Carmenza Martinez, Koushik Kasavajhala, Lauren Wickstrom, Kevin E. Hauser, and Carlos Simmerling
    ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB
    Journal of Chemical Theory and Computation 2015 11 (8), 3696-3713
    DOI: 10.1021/acs.jctc.5b00255
  • 查看现有残基
print(Xponge.ResidueType.types)

得到结果:

{'ACE': Type of Residue: ACE, 'ASH': Type of Residue: ASH, 'CYM': Type of Residue: CYM, 'GLH': Type of Residue: GLH, 'LYN': Type of Residue: LYN, 'NME': Type of Residue: NME, 'NALA': Type of Residue: NALA, 'ALA': Type of Residue: ALA, 'CALA': Type of Residue: CALA, 'NARG': Type of Residue: NARG, 'ARG': Type of Residue: ARG, 'CARG': Type of Residue: CARG, 'NASN': Type of Residue: NASN, 'ASN': Type of Residue: ASN, 'CASN': Type of Residue: CASN, 'NASP': Type of Residue: NASP, 'ASP': Type of Residue: ASP, 'CASP': Type of Residue: CASP, 'NCYS': Type of Residue: NCYS, 'CYS': Type of Residue: CYS, 'CCYS': Type of Residue: CCYS, 'NCYX': Type of Residue: NCYX, 'CYX': Type of Residue: CYX, 'CCYX': Type of Residue: CCYX, 'NGLN': Type of Residue: NGLN, 'GLN': Type of Residue: GLN, 'CGLN': Type of Residue: CGLN, 'NGLU': Type of Residue: NGLU, 'GLU': Type of Residue: GLU, 'CGLU': Type of Residue: CGLU, 'NGLY': Type of Residue: NGLY, 'GLY': Type of Residue: GLY, 'CGLY': Type of Residue: CGLY, 'NHID': Type of Residue: NHID, 'HID': Type of Residue: HID, 'CHID': Type of Residue: CHID, 'NHIE': Type of Residue: NHIE, 'HIE': Type of Residue: HIE, 'CHIE': Type of Residue: CHIE, 'NHIP': Type of Residue: NHIP, 'HIP': Type of Residue: HIP, 'CHIP': Type of Residue: CHIP, 'NHE': Type of Residue: NHE, 'HYP': Type of Residue: HYP, 'CHYP': Type of Residue: CHYP, 'NILE': Type of Residue: NILE, 'ILE': Type of Residue: ILE, 'CILE': Type of Residue: CILE, 'NLEU': Type of Residue: NLEU, 'LEU': Type of Residue: LEU, 'CLEU': Type of Residue: CLEU, 'NLYS': Type of Residue: NLYS, 'LYS': Type of Residue: LYS, 'CLYS': Type of Residue: CLYS, 'NMET': Type of Residue: NMET, 'MET': Type of Residue: MET, 'CMET': Type of Residue: CMET, 'NPHE': Type of Residue: NPHE, 'PHE': Type of Residue: PHE, 'CPHE': Type of Residue: CPHE, 'NPRO': Type of Residue: NPRO, 'PRO': Type of Residue: PRO, 'CPRO': Type of Residue: CPRO, 'NSER': Type of Residue: NSER, 'SER': Type of Residue: SER, 'CSER': Type of Residue: CSER, 'NTHR': Type of Residue: NTHR, 'THR': Type of Residue: THR, 'CTHR': Type of Residue: CTHR, 'NTRP': Type of Residue: NTRP, 'TRP': Type of Residue: TRP, 'CTRP': Type of Residue: CTRP, 'NTYR': Type of Residue: NTYR, 'TYR': Type of Residue: TYR, 'CTYR': Type of Residue: CTYR, 'NVAL': Type of Residue: NVAL, 'VAL': Type of Residue: VAL, 'CVAL': Type of Residue: CVAL, 'HIS': Type of Residue: HIE, 'NHIS': Type of Residue: NHIE, 'CHIS': Type of Residue: CHIE}
  • 使用现有残基构建初始结构

残基类(Xponge.ResidueType)、残基(Xponge.Residue)、分子(Xponge.Molecule)之间,可以使用+进行连接获得分子(Xponge.Molecule),也可以*整数(int)进行多次自我连接。连接规则由刚才import的力场文件决定。

protein = ACE + ALA * 3 + NME  
  • 保存输出

残基类(Xponge.ResidueType)、残基(Xponge.Residue)、分子(Xponge.Molecule)可以使用Save_PDBSave_SPONGE_InputSave_Mol2Save_NPZ分别保存为对应的文件格式。

Save_PDB(protein, "protein.pdb")
Save_SPONGE_Input(protein, "protein")

使用VMD观看保存的PDB

vmd protein.pdb

或利用vmd的SPONGE插件

vmd -sponge_mass ./protein_mass.txt -sponge_crd ./protein_coordinate.txt

可获得如下结果

输入图片说明

  • 动力学模拟

此处仅作示例,因此保存的分子较小,人为修改生成的protein_coordinate.txt文件的最后一行,将盒子的长度改为50.0,以避免过小的周期性边界造成的影响。

修改好后,新建"mdin.txt"文件,并填写

basic test of Xponge
    mode = NVT
    thermostat = Andersen_thermostat
    dt = 2e-3
    constrain_mode = SHAKE
    cutoff = 8.0
    step_limit = 5000
    coordinate_in_file = protein_coordinate.txt
    angle_in_file = protein_angle.txt
    bond_in_file = protein_bond.txt
    charge_in_file = protein_charge.txt
    dihedral_in_file = protein_dihedral.txt
    exclude_in_file = protein_exclude.txt
    LJ_in_file = protein_LJ.txt
    mass_in_file = protein_mass.txt
    nb14_in_file = protein_nb14.txt
    residue_in_file = protein_residue.txt

使用SPONGE运行,获得如下结果

---------------------------------------------------------------------------------------
        step =         1000,         time =        2.000,  temperature =       305.35,
   potential =        47.21,           LJ =        -3.73,          PME =      -232.74,
     nb14_LJ =        26.62,      nb14_EE =       196.30,         bond =        12.74,
       angle =        16.63,     dihedral =        32.51,
---------------------------------------------------------------------------------------
        step =         2000,         time =        4.000,  temperature =       194.94,
   potential =        51.01,           LJ =        -2.02,          PME =      -229.18,
     nb14_LJ =        30.27,      nb14_EE =       188.48,         bond =        12.04,
       angle =        22.31,     dihedral =        30.75,
---------------------------------------------------------------------------------------
        step =         3000,         time =        6.000,  temperature =       246.57,
   potential =        49.60,           LJ =        -4.42,          PME =      -222.75,
     nb14_LJ =        31.28,      nb14_EE =       189.09,         bond =        11.10,
       angle =        16.47,     dihedral =        30.80,
---------------------------------------------------------------------------------------
        step =         4000,         time =        8.000,  temperature =       273.81,
   potential =        55.53,           LJ =        -4.54,          PME =      -231.54,
     nb14_LJ =        30.79,      nb14_EE =       196.70,         bond =         9.60,
       angle =        18.88,     dihedral =        29.40,
---------------------------------------------------------------------------------------
        step =         5000,         time =       10.000,  temperature =       344.12,
   potential =        48.44,           LJ =        -5.35,          PME =      -230.99,
     nb14_LJ =        29.09,      nb14_EE =       198.53,         bond =         6.32,
       angle =        19.48,     dihedral =        31.79,
---------------------------------------------------------------------------------------

部分内容在后续例子中相同,后续例子只在有必要的时候展示重复操作的结果部分。

  • 该部分完整Python代码
import Xponge
import Xponge.forcefield.AMBER.ff14SB
protein = ACE + ALA * 3 + NME
Save_PDB(protein, "protein.pdb")
Save_SPONGE_Input(protein, "protein")

A2. 现有残基,有初始坐标

目前推荐是从PDB文件中读入

  • 引入现有力场
import Xponge
import Xponge.forcefield.AMBER.ff14SB
  • 读入现有文件

示例pdb文件:由H++补氢并添加了SSBOND信息的新冠病毒Spike蛋白与ACE2受体结合的PDB

protein = loadpdb("0.15_80_10_pH6.5_6lzg.result.pdb")
  • 该部分完整Python代码
import Xponge
import Xponge.forcefield.AMBER.ff14SB
protein = loadpdb("0.15_80_10_pH6.5_6lzg.result.pdb")
Save_PDB(protein, "protein.pdb")
Save_SPONGE_Input(protein, "protein")

注意事项

  1. PDB文件格式是标准化的,修改前请确认理解PDB的格式
  2. 从Protein Data Bank下载的PDB文件不包含氢,目前SPONGE不支持自动补氢,请手动或使用其他工具(如H++)补氢。补氢时需要注意氢的命名需与标准相同
  3. H++产生的PDB不包含SSBOND,需自行将原始PDB中SSBOND部分添加至H++产生的PDB中,Xponge能自动将二硫键的半胱氨酸残基更名。另外,Xponge能够自动根据质子判断组氨酸的残基名

A3. 非现有单独残基,已知信息

只需要构建好残基类(Xponge.ResidueType),将非现有残基转化为现有残基

以gaff力场下的自定义水为例

方案1 从mol2文件中构建

编写mol2文件

@<TRIPOS>MOLECULE
TP3
    3     2     1     0     1 
SMALL
USER_CHARGES
@<TRIPOS>ATOM
  1 O       0.000000    0.000000    0.000000 oh    1 WAT    -0.8340 ****
  2 H1      0.957200    0.000000    0.000000 ho    1 WAT     0.4170 ****
  3 H2     -0.239988    0.926627    0.000000 ho    1 WAT     0.4170 ****
@<TRIPOS>BOND
    1     1     2 1
    2     1     3 1
@<TRIPOS>SUBSTRUCTURE
      1  WAT              1 ****               0 ****  **** 

然后在Python中

import Xponge
import Xponge.forcefield.AMBER.gaff
TP3 = loadmol2("WAT.mol2")
Save_SPONGE_Input(TP3, "tp3")

Xponge会根据mol2文件中的残基名(此例中的"WAT")在内部添加残基类(Xponge.ResidueType),而loadmol2最后会返回的(此例中的"TP3")是包含该mol2中所有残基的分子(Xponge.Molecule)。参与PDB中残基识别只与残基类(Xponge.ResidueType)有关。

方案2 Python代码构建
#构建新的空残基类
import Xponge
import Xponge.forcefield.AMBER.gaff
WAT = Xponge.ResidueType(name = "WAT")
#添加原子信息
WAT.Add_Atom(name = "O", atom_type = Xponge.AtomType.types["oh"], x = 0, y = 0, z = 0)
WAT.O.Update(**{"charge[e]": -0.8340})
WAT.Add_Atom(name = "H1", atom_type = Xponge.AtomType.types["ho"], x = 0.9572, y = 0, z = 0)
WAT.H1.Update(**{"charge[e]": 0.4170})
WAT.Add_Atom(name = "H2", atom_type = Xponge.AtomType.types["ho"], x = -0.239988, y = 0.926627, z = 0)
WAT.H2.Update(**{"charge[e]": 0.4170})
#添加连接信息
WAT.Add_Connectivity(WAT.O, WAT.H1)
WAT.Add_Connectivity(WAT.O, WAT.H2)

Save_SPONGE_Input(WAT, "TP3")

A4. 非现有单独残基,未知信息

以gaff力场下的2,3-二甲基苯甲酸乙酯为例

方案1 通过IUPAC名或SMILES结构式从PubChem中获取基本的结构
import Xponge

#从PubChem中获取结构
assign = Get_Assignment_From_PubChem("ethyl 2,6-dimethylbenzoate", "name")
#也可以使用SMILES
#assign = Get_Assignment_From_PubChem("CCOC(=O)C1=C(C=CC=C1C)C", "smiles")

#自动推断原子类别
import Xponge.forcefield.AMBER.gaff
assign.Determine_Atom_Type("GAFF")

#保存assignment至mol2文件中
Save_Mol2(assign, "EDF_ASN.mol2")

#通过vmd判断出等价性
equivalence = [[9,10], range(16,22), [3,4], [5,6], [13,14]]
q = assign.Calculate_Charge("RESP", basis = "6-311g*", grid_density = 1, 
    extra_equivalence = equivalence, opt = True)

EDF = assign.To_ResidueType("EDF", q)
Save_Mol2(EDF, "EDF.mol2")

最后获得的"EDF.mol2"即可进行下一步计算

@<TRIPOS>MOLECULE
EDF
 27 27 1 0 1
SMALL
USER_CHARGES
@<TRIPOS>ATOM
     1    O    1.826   -0.000    0.361   os     1      EDF  -0.563454
     2   O1    1.320   -0.002   -1.787    o     1      EDF  -0.656809
     3    C   -0.453   -0.000   -0.196   ca     1      EDF  -0.456248
     4   C1   -1.103   -1.216   -0.002   ca     1      EDF   0.283884
     5   C2   -1.101    1.217   -0.003   ca     1      EDF   0.283884
     6   C3   -2.432   -1.197    0.395   ca     1      EDF  -0.284050
     7   C4   -2.431    1.200    0.394   ca     1      EDF  -0.284050
     8   C5   -3.091    0.002    0.592   ca     1      EDF  -0.137956
     9   C6    0.979   -0.001   -0.654    c     1      EDF   1.049933
    10   C7   -0.382   -2.527   -0.219   c3     1      EDF  -0.396791
    11   C8   -0.379    2.527   -0.221   c3     1      EDF  -0.396791
    12   C9    3.218   -0.000    0.060   c3     1      EDF   0.506223
    13  C10    3.968    0.001    1.373   c3     1      EDF  -0.267413
    14    H   -2.953   -2.125    0.550   ha     1      EDF   0.170890
    15   H1   -2.951    2.129    0.548   ha     1      EDF   0.170890
    16   H2   -4.122    0.002    0.899   ha     1      EDF   0.163931
    17   H3   -0.010   -2.607   -1.234   hc     1      EDF   0.118938
    18   H4    0.467   -2.623    0.451   hc     1      EDF   0.118938
    19   H5   -1.041   -3.366   -0.037   hc     1      EDF   0.118938
    20   H6   -0.007    2.605   -1.236   hc     1      EDF   0.118938
    21   H7   -1.037    3.366   -0.041   hc     1      EDF   0.118938
    22   H8    0.470    2.622    0.449   hc     1      EDF   0.118938
    23   H9    3.449   -0.875   -0.533   h1     1      EDF  -0.046089
    24  H10    3.449    0.872   -0.535   h1     1      EDF  -0.046089
    25  H11    5.037    0.001    1.189   hc     1      EDF   0.064160
    26  H12    3.723    0.880    1.958   hc     1      EDF   0.064160
    27  H13    3.723   -0.876    1.960   hc     1      EDF   0.064160
@<TRIPOS>BOND
     1      1      9 1
     2      1     12 1
     3      2      9 1
     4      3      4 1
     5      3      5 1
     6      3      9 1
     7      4      6 1
     8      4     10 1
     9      5      7 1
    10      5     11 1
    11      6      8 1
    12      6     14 1
    13      7      8 1
    14      7     15 1
    15      8     16 1
    16     10     17 1
    17     10     18 1
    18     10     19 1
    19     11     20 1
    20     11     21 1
    21     11     22 1
    22     12     13 1
    23     12     23 1
    24     12     24 1
    25     13     25 1
    26     13     26 1
    27     13     27 1
@<TRIPOS>SUBSTRUCTURE
    1      EDF      1 ****               0 ****  **** 

目前Xponge不支持自动判断等价原子,因此需要靠vmd来手动判断

输入图片说明

目前Xponge的assignment只支持只由C、H、O、N、S、P、F、Cl、Br、I元素构成的物质

方案2 其他方式构建assignment的mol2文件

只需将对应的Get_Assignment_From_PubChem更改为Get_Assignment_From_Mol2即可

assign = Get_Assignment_From_Mol2("EDF_ASN.mol2")

注意,任务(Xponge.assign.Assign)和分子(Xponge.Molecule)均可读mol2,但是它们是不一样的,而且文件中的信息有效性也不同

任务(Xponge.assign.Assign)使用Get_Assignment_From_Mol2读取,其中的原子类别为元素符号,且bond部分中的键需要明确键级

分子(Xponge.Molecule)使用loadmol2读取,其中的原子类别为力场中的符号,且bond部分中的键不会读取键级

方案3 Python代码构建

关键在于构建任务类(Xponge.assign.Assign),其他步骤相同。此处以构建水分子为例。

import Xponge
import Xponge.forcefield.AMBER.gaff
assign = Xponge.assign.Assign()
assign.Add_Atom(element = "O", x = 0, y = 0, z = 0)
assign.Add_Atom(element = "H", x = 0.9572, y = 0, z = 0)
assign.Add_Atom(element = "H", x = -0.239988, y = 0.926627, z = 0)
assign.Add_Bond(0,1,1) #0号原子和1号原子之间形成一个单键
assign.Add_Bond(0,2,1) #0号原子和2号原子之间形成一个单键

#注意,在推断原子类型前需要推断环和键的信息,虽然对水没有用
assign.Determine_Ring_And_Bond_Type()

assign.Determine_Atom_Type("GAFF")
q = assign.Calculate_Charge("RESP", extra_equivalence = [[1,2]])

WAT = assign.To_ResidueType("WAT", q)
Save_Mol2(WAT, "WAT.mol2")

最终即获得"WAT.mol2":

@<TRIPOS>MOLECULE
WAT
 3 2 1 0 1
SMALL
USER_CHARGES
@<TRIPOS>ATOM
     1    O    0.000    0.000    0.000   oh     1      WAT  -0.799534
     2    H    0.957    0.000    0.000   ho     1      WAT   0.399767
     3   H1   -0.240    0.927    0.000   ho     1      WAT   0.399767
@<TRIPOS>BOND
     1      1      2 1
     2      1      3 1
@<TRIPOS>SUBSTRUCTURE
    1      WAT      1 ****               0 ****  **** 

A5. 非现有非单独残基

方案1 mol2文件构建

以ff14SB力场下丙氨酸二肽的构建为例

实际上,ff14SB力场中包含丙氨酸二肽,此处只为示例

先构建dipeptide.mol2文件

@<TRIPOS>MOLECULE
ACE
 22 21 3 0 1
SMALL
USER_CHARGES
@<TRIPOS>ATOM
     1   H1    0.466   -8.051    1.242   HC     1      ACE   0.112300
     2  CH3    0.289   -7.339    0.436   CT     1      ACE  -0.366200
     3   H2   -0.703   -6.901    0.548   HC     1      ACE   0.112300
     4   H3    0.352   -7.853   -0.524   HC     1      ACE   0.112300
     5    C    1.325   -6.213    0.457    C     1      ACE   0.597200
     6    O    2.209   -6.195    1.311    O     1      ACE  -0.567900
     7    N    1.275   -5.267   -0.433    N     2      ALA  -0.415700
     8    H    0.563   -5.249   -1.150    H     2      ALA   0.271900
     9   CA    2.256   -4.201   -0.413   CX     2      ALA   0.033700
    10   HA    2.199   -3.671    0.538   H1     2      ALA   0.082300
    11   CB    3.668   -4.752   -0.580   CT     2      ALA  -0.182500
    12  HB1    3.744   -5.277   -1.532   HC     2      ALA   0.060300
    13  HB2    4.384   -3.930   -0.561   HC     2      ALA   0.060300
    14  HB3    3.888   -5.443    0.234   HC     2      ALA   0.060300
    15    C    2.009   -3.207   -1.539    C     2      ALA   0.597300
    16    O    1.072   -3.368   -2.318    O     2      ALA  -0.567900
    17    N    2.791   -2.179   -1.682    N     3      NME  -0.415700
    18    H    3.571   -2.011   -1.063    H     3      NME   0.271900
    19  CH3    2.555   -1.233   -2.754   CT     3      NME  -0.149000
    20 HH31    1.686   -1.546   -3.331   H1     3      NME   0.097600
    21 HH32    2.374   -0.244   -2.333   H1     3      NME   0.097600
    22 HH33    3.429   -1.195   -3.405   H1     3      NME   0.097600
@<TRIPOS>BOND
     1      1      2 1
     2      2      3 1
     3      2      4 1
     4      2      5 1
     5      5      6 1
     6      5      7 1
     7      7      8 1
     8      7      9 1
     9      9     10 1
    10      9     11 1
    11      9     15 1
    12     11     12 1
    13     11     13 1
    14     11     14 1
    15     15     16 1
    16     15     17 1
    17     17     18 1
    18     17     19 1
    19     19     20 1
    20     19     21 1
    21     19     22 1
@<TRIPOS>SUBSTRUCTURE
    1      ACE      1 ****               0 ****  **** 
    2      ALA      7 ****               0 ****  **** 
    3      NME     17 ****               0 ****  **** 

然后在python中读入力场参数后加载mol2文件即可正常使用该残基,并会自动按照mol2的前后连接关系在后续的PDB读入中连接。

import Xponge
import Xponge.forcefield.AMBER.ff14SB

protein = loadmol2("dipeptide.mol2")

如果不需要使用+*构建新分子,则到处就已经满足使用了。如果希望正确使用+*,则需要再设置连接信息

res = Xponge.ResidueType.types["ALA"]
res.head = "N"  #残基的头部(与前一个残基连接的原子)atom name是N
res.head_length = 1.3  #与前一个残基连接的键长是1.3埃
res.head_next = "CA" #残基的主链头部第二个原子atom name是CA
res.tail = "C" #残基的尾部(与后一个残基连接的原子)atom name是N
res.tail_length = 1.3 #与后一个残基连接的键长是1.3埃
res.tail_next = "CA" #残基的主链尾部第二个原子atom name是CA

#清空ff14SB中已有的信息,普通构建未有残基不需要
while res.head_link_conditions:
    res.head_link_conditions.pop()
while res.head_link_conditions:
    res.tail_link_conditions.pop()
import numpy as np
#与前一个残基连接时,CA-N-前一个残基的tail原子形成的角为120/180 * np.pi
res.head_link_conditions.append({"atoms":["CA", "N"], "parameter": 120/180 * np.pi})
#与前一个残基连接时,H-CA-N-前一个残基的tail原子形成的二面角为-np.pi
res.head_link_conditions.append({"atoms":["H", "CA", "N"], "parameter": -np.pi})
#与后一个残基连接时,CA-C-后一个残基的head原子形成的角为120/180 * np.pi
res.tail_link_conditions.append({"atoms":["CA", "C"], "parameter": 120/180 * np.pi})
#与后一个残基连接时,O-CA-C-后一个残基的head原子形成的二面角为-np.pi
res.tail_link_conditions.append({"atoms":["O", "CA", "C"], "parameter": -np.pi})     

刚体连接有6个自由度,分别是1个bond,2个angle,3个dihedral。其中1个bond由键长决定,1个主链dihedral(tail_next - tail - head - head_next)设定为180度防止重叠,剩余4个自由度由前一个残基和后一个残基分别定义一个angle和dihedral来实现

如果希望在PDB中,端基不同,则可产生不同的残基类(Xponge.ResidueType),如NALA、CALA,然后在全局设置中设置

Xponge.GlobalSetting.Add_PDB_Residue_Name_Mapping("head", "ALA", "NALA")
Xponge.GlobalSetting.Add_PDB_Residue_Name_Mapping("tail", "ALA", "CALA")

特别地,对于组氨酸判别不同质子态和半胱氨酸判别二硫键,需要额外设置

Xponge.GlobalSetting.HISMap["DeltaH"] = "HD1"
Xponge.GlobalSetting.HISMap["EpsilonH"] = "HE2"
Xponge.GlobalSetting.HISMap["HIS"].update({"HIS": {"HID":"HID", "HIE":"HIE", "HIP":"HIP"}, 
                                    "CHIS":{"HID":"CHID", "HIE":"CHIE", "HIP":"CHIP"},
                                    "NHIS":{"HID":"NHID", "HIE":"NHIE", "HIP":"NHIP"}})
Xponge.ResidueType.types["CYX"].connect_atoms["ssbond"] = "SG"
方案2 Python代码构建

类似A3方案2构建残基类(Xponge.ResidueType),然后再按A5方案1设置连接信息即可。

B. 非现有力场

B1. 新力场参数

方案1 字符串/文本文件/npz文件读取

以在AMBER力场形式下构建OPLSAA力场的硝基甲烷为例。数据来源于GMXTPP

import Xponge
import Xponge.forcefield.AMBER

#构建新的原子类
Xponge.AtomType.New_From_String("""name  mass  charge[e] LJtype
opls_760  14.01   0.54   opls_760
opls_761  16.00  -0.37   opls_761
opls_762  12.01   0.02   opls_762
opls_763  1.008   0.06   opls_763""")

#构建新的LJ参数信息
Xponge.forcefield.BASE.LJ.LJType.New_From_String("""name  sigma[nm]  epsilon[kJ/mol]
opls_760-opls_760 0.3250000    0.5020800
opls_761-opls_761 0.2960000    0.7112800
opls_762-opls_762 0.3500000    0.2761440
opls_763-opls_763 0.2500000    0.0627600  
""")

#构建新的成键信息
#New_From_NPZ待更新

temp_dict =  {"opls_762-opls_763": {"b[nm]":0.109, "k[kJ/mol·nm^-2]": 284512},
              "opls_762-opls_760": {"b[nm]":0.14900, "k[kJ/mol·nm^-2]": 313800},
              "opls_760-opls_761": {"b[nm]":0.1225, "k[kJ/mol·nm^-2]": 460240}}
Xponge.forcefield.BASE.BOND.BondType.New_From_Dict(temp_dict)

Xponge.forcefield.BASE.ANGLE.AngleType.New_From_File("test_angle.txt")

Xponge.forcefield.BASE.DIHEDRAL.ProperType.New_From_String("""name phi0[degree] k[kJ/mol] periodicity  reset
opls_763-opls_762-opls_760-opls_761  0 0 0 1
""")

Xponge.forcefield.BASE.DIHEDRAL.ImproperType.New_From_String("""name phi0[degree] k[kJ/mol] periodicity
opls_761-opls_761-opls_760-X 180.0     43.93200   2
""")

#OPLS力场的nb14的修正系数与amber不同
Xponge.forcefield.BASE.NB14.NB14Type.New_From_String("""name kLJ kee
opls_763-opls_761 0.5 0.5
""")

NIM = Xponge.ResidueType(name = "NIM")
#添加原子信息
NIM.Add_Atom(name = "CT", atom_type = Xponge.AtomType.types["opls_762"], x = 1.107, y = 1.13, z = 1.117)
NIM.Add_Atom(name = "HC1", atom_type = Xponge.AtomType.types["opls_763"], x = 1.143, y = 1.029, z = 1.117)
NIM.Add_Atom(name = "HC2", atom_type = Xponge.AtomType.types["opls_763"], x = 1.143, y = 1.18, z = 1.03)
NIM.Add_Atom(name = "HC3", atom_type = Xponge.AtomType.types["opls_763"], x = 1., y = 1.13, z = 1.117)
NIM.Add_Atom(name = "NO", atom_type = Xponge.AtomType.types["opls_760"], x = 1.156, y = 1.199, z = 1.237)
NIM.Add_Atom(name = "ON1", atom_type = Xponge.AtomType.types["opls_761"], x = 1.177, y = 1.321, z = 1.234)
NIM.Add_Atom(name = "ON2", atom_type = Xponge.AtomType.types["opls_761"], x = 1.177, y = 1.135, z = 1.341)

#添加连接信息
NIM.Add_Connectivity(NIM.CT, NIM.HC1)
NIM.Add_Connectivity(NIM.CT, NIM.HC2)
NIM.Add_Connectivity(NIM.CT, NIM.HC3)
NIM.Add_Connectivity(NIM.CT, NIM.NO)
NIM.Add_Connectivity(NIM.ON1, NIM.NO)
NIM.Add_Connectivity(NIM.ON2, NIM.NO)

Save_PDB(NIM)
Save_SPONGE_Input(NIM)

代码中的"test_angle.txt"文件如下:

name b[degree] k[kJ/mol·rad^-2]
opls_763-opls_762-opls_763  107.800    276.144
opls_763-opls_762-opls_760  105.000    292.880
opls_762-opls_760-opls_761  117.500    669.440
opls_761-opls_760-opls_761  125.000    669.440
方案2 AMBER格式读取(parmdat和frcmod)

例如ff14SBff19SB的实现,先使用loadparmdatloadfrcmod获得字符串,然后再使用各类型的New_From_String即可

import Xponge
import Xponge.forcefield.AMBER
atoms, bonds, angles, propers, impropers, LJs = loadparmdat("parm19.dat")

Xponge.AtomType.New_From_String(atoms)
Xponge.forcefield.BASE.BOND.BondType.New_From_String(bonds)
Xponge.forcefield.BASE.ANGLE.AngleType.New_From_String(angles)
Xponge.forcefield.BASE.DIHEDRAL.ProperType.New_From_String(propers)
Xponge.forcefield.BASE.DIHEDRAL.ImproperType.New_From_String(impropers)
Xponge.forcefield.BASE.LJ.LJType.New_From_String(LJs)


atoms, bonds, angles, propers, impropers, LJs, cmap = loadfrcmod("ff19SB.frcmod")

Xponge.AtomType.New_From_String(atoms)
Xponge.forcefield.BASE.BOND.BondType.New_From_String(bonds)
Xponge.forcefield.BASE.ANGLE.AngleType.New_From_String(angles)
Xponge.forcefield.BASE.DIHEDRAL.ProperType.New_From_String(propers)
Xponge.forcefield.BASE.DIHEDRAL.ImproperType.New_From_String(impropers)
Xponge.forcefield.BASE.LJ.LJType.New_From_String(LJs)

from Xponge.forcefield.BASE import RCMAP
Xponge.forcefield.BASE.RCMAP.CMAP.Residue_Map.update(cmap)
方案3 GROMACS格式读取(forcefield.itp)

例如CHARMM27的蛋白质力场的实现,先使用loadffitp获得参数字典,然后再使用各类型的New_From_StringNew_From_Dict即可

import Xponge
import Xponge.forcefield.CHARMM27
output = loadffitp("forcefield.itp")

Xponge.AtomType.New_From_String(output["atomtypes"])
Xponge.forcefield.BASE.BOND.BondType.New_From_String(output["bonds"])
output["dihedrals"] += "X-X-X-X 0 0 1 0\n"
Xponge.forcefield.BASE.DIHEDRAL.ProperType.New_From_String(output["dihedrals"])
Xponge.forcefield.BASE.LJ.LJType.New_From_String(output["LJ"])
Xponge.forcefield.BASE.UREY_BRADLEY.UreyBradleyType.New_From_String(output["Urey-Bradley"])
Xponge.forcefield.BASE.IMPROPER.ImproperType.New_From_String(output["impropers"])
Xponge.forcefield.BASE.NB14_EXTRA.NB14Type.New_From_String(output["nb14_extra"])
Xponge.forcefield.BASE.NB14.NB14Type.New_From_String(output["nb14"])
Xponge.forcefield.BASE.ACMAP.CMAP.New_From_Dict(output["cmaps"])

loadffitp目前功能还很不全,并不一定完全支持函数形式,对于不支持的形式待更新或给出错误提示

loadffitp只能加载力场项的itp文件,也即不包含“[ moleculetype ]”的itp

loadffitp中对于宏的处理不会去寻找gromacs的路径,也即文件中的#include “xxx.itp”只会在当前目录下寻找

B2. 新力场形式

类型1 非键

非键可以看作本身是原子性质,以目前实现的静电和LJ作用为例

静电

本身实现于Xponge.forcefield.BASE.CHARGE中

import Xponge
#给原子类别添加性质
Xponge.AtomType.Add_Property({"charge":float})

#给电荷添加单位
#三个参数的意义是:性质"charge"的单位是"charge",程序内部单位是"SPONGE"
Xponge.AtomType.Set_Property_Unit("charge", "charge", "e")

#通过修饰器@Xponge.Molecule.Set_Save_SPONGE_Input使得Save_SPONGE_Input时调用该函数
#被调用的函数接受三个参数,分别是构建的分子、前缀名和保存的路径
@Xponge.Molecule.Set_Save_SPONGE_Input      
def write_charge(self, prefix, dirname):
    towrite = "%d\n"%(len(self.atoms)) #通过self.atoms获取所有原子
    towrite += "\n".join(["%.6f"%(atom.charge * 18.2223) for atom in self.atoms])  #通过atom.charge可以调用上面Add_Property的性质
    f = open(os.path.join(dirname, prefix + "_charge.txt"),"w")
    f.write(towrite)
    f.close()
LJ作用

本身实现于Xponge.forcefield.BASE.LJ中

import Xponge
#给原子类别添加性质
Xponge.AtomType.Add_Property({"LJtype":str})

#生成一个新的类型(Xponge.Type)的子类,参数分别是名字、性质
LJType = Xponge.Generate_New_Pairwise_Force_Type("LJ", {"epsilon": float, "rmin": float, "sigma":float, "A":float, "B":float})

#设置单位(性质、量纲、程序内部单位)
LJType.Set_Property_Unit("rmin", "distance", "A")
LJType.Set_Property_Unit("sigma", "distance", "A")
LJType.Set_Property_Unit("epsilon", "energy", "kcal/mol")
LJType.Set_Property_Unit("A", "energy·distance^6", "kcal/mol·A^6")
LJType.Set_Property_Unit("B", "energy·distance^12", "kcal/mol·A^12")

#通过修饰器Xponge.GlobalSetting.Add_Unit_Transfer_Function(LJType)使得LJType初始化进行单位转化时调用
@Xponge.GlobalSetting.Add_Unit_Transfer_Function(LJType)
def LJ_Unit_Transfer(self):
    if self.A != None and self.B != None:
        self.sigma = (self.A / self.B) ** (1/6)
        self.epsilon = 0.25 * B * self.sigma ** (-6)
        self.A = None
        self.B = None
    if self.sigma != None:
        self.rmin = self.sigma * (4 ** (1/12) / 2)
        self.sigma = None

#定义默认的组合规则供内部使用,自己定义的
def Lorentz_Berthelot_For_A(epsilon1, rmin1, epsilon2, rmin2):
    return np.sqrt(epsilon1 * epsilon2) * ((rmin1 + rmin2) ** 12)

def Lorents_Berthelot_For_B(epsilon1, rmin1, epsilon2, rmin2):
    return np.sqrt(epsilon1 * epsilon2) * 2 * ((rmin1 + rmin2) ** 6)
    
#通过修饰器@Xponge.Molecule.Set_Save_SPONGE_Input使得Save_SPONGE_Input时调用该函数
#被调用的函数接受三个参数,分别是构建的分子、前缀名和保存的路径
@Xponge.Molecule.Set_Save_SPONGE_Input      
def write_LJ(self, prefix, dirname):
    LJtypes = []
    LJtypemap = {}
    for atom in self.atoms:
        if atom.LJtype not in LJtypemap.keys():
            LJtypemap[atom.LJtype] = len(LJtypes)
            LJtypes.append(atom.LJtype)
             
    As = []
    Bs = []
    for i in range(len(LJtypes)):
        LJ_i = LJType.types[LJtypes[i] + "-" + LJtypes[i]]
        for j in range(len(LJtypes)):
            LJ_j = LJType.types[LJtypes[j] + "-" + LJtypes[j]]
            finded = False
            findnames = [LJtypes[i] + "-" + LJtypes[j], LJtypes[j] + "-" + LJtypes[i]]
            for findname in findnames:
                if findname in LJType.types.keys():
                    finded = True
                    LJ_ij = LJType.types[findname]
                    As.append(LJType.combining_method_A(LJ_ij.epsilon, LJ_ij.rmin, LJ_ij.epsilon, LJ_ij.rmin))
                    Bs.append(LJType.combining_method_B(LJ_ij.epsilon, LJ_ij.rmin, LJ_ij.epsilon, LJ_ij.rmin))
                    break
            if not finded:
                    As.append(LJType.combining_method_A(LJ_i.epsilon, LJ_i.rmin, LJ_j.epsilon, LJ_j.rmin))
                    Bs.append(LJType.combining_method_B(LJ_i.epsilon, LJ_i.rmin, LJ_j.epsilon, LJ_j.rmin))
    
    checks = {}
    count = 0
    for i in range(len(LJtypes)):
        check_string_A = ""
        check_string_B = ""
        for j in range(len(LJtypes)):
            check_string_A += "%16.7e"%As[count] + " "
            check_string_B += "%16.7e"%Bs[count] + " "
            count += 1
            
        checks[i] = check_string_A+check_string_B
    
    same_type = { i: i for i in range(len(LJtypes))}
    for i in range(len(LJtypes)-1, -1, -1):
        for j in range(i+1, len(LJtypes)):
            if checks[i] == checks[j]:
                same_type[j] = i

    real_LJtypes = []
    real_As = []
    real_Bs = []
    tosub = 0
    for i in range(len(LJtypes)):
        
        if same_type[i] == i:
            real_LJtypes.append(LJtypes[i])
            same_type[i] -= tosub
        else:
            same_type[i] = same_type[same_type[i]]
            tosub += 1

    for i in range(len(real_LJtypes)):
        LJ_i = LJType.types[real_LJtypes[i] + "-" + real_LJtypes[i]]
        for j in range(i+1):
            LJ_j = LJType.types[real_LJtypes[j] + "-" + real_LJtypes[j]]
            finded = False
            findnames = [real_LJtypes[i] + "-" + real_LJtypes[j], real_LJtypes[j] + "-" + real_LJtypes[i]]
            for findname in findnames:
                if findname in LJType.types.keys():
                    finded = True
                    LJ_ij = LJType.types[findname]
                    real_As.append(LJType.combining_method_A(LJ_ij.epsilon, LJ_ij.rmin, LJ_ij.epsilon, LJ_ij.rmin))
                    real_Bs.append(LJType.combining_method_B(LJ_ij.epsilon, LJ_ij.rmin, LJ_ij.epsilon, LJ_ij.rmin))
                    break
            if not finded:
                    real_As.append(LJType.combining_method_A(LJ_i.epsilon, LJ_i.rmin, LJ_j.epsilon, LJ_j.rmin))
                    real_Bs.append(LJType.combining_method_B(LJ_i.epsilon, LJ_i.rmin, LJ_j.epsilon, LJ_j.rmin))
    
                
    
    towrite = "%d %d\n\n"%(len(self.atoms), len(real_LJtypes))
    count = 0
    for i in range(len(real_LJtypes)):
        for j in range(i+1):
            towrite += "%16.7e"%real_As[count] + " "
            count += 1
        towrite +="\n"
    towrite += "\n"
    
    count = 0
    for i in range(len(real_LJtypes)):
        for j in range(i+1):
            towrite += "%16.7e"%real_Bs[count] + " "
            count += 1
        towrite +="\n"
    towrite += "\n"
    towrite += "\n".join(["%d"%(same_type[LJtypemap[atom.LJtype]]) for atom in self.atoms])
    f = open(os.path.join(dirname, prefix + "_LJ.txt"),"w")
    f.write(towrite)
    f.close()
类型2 成键
基于原子判断的(atom-specific)

最简单的例子是AMBER力场的简谐bond

import Xponge

#生成一个新的类型(Xponge.Type)的子类,参数分别是名字、成键关系、性质和是否是必须的
BondType = Xponge.Generate_New_Bonded_Force_Type("bond", "1-2", {"k":float, "b":float}, True)


#设置性质单位
BondType.Set_Property_Unit("k", "energy·distance^-2", "kcal/mol·A^-2")
BondType.Set_Property_Unit("b", "distance", "A")

#保存操作,通过self.bonded_forces["bond"]("bond"对应于上面的产生类型时输出的字符串)获取相关信息
#而对应的self.bonded_forces["bond"]的成员的属性中,atoms是成键的原子,k、b是上面自己定义的
#self.atom_index是一个字典,原子为key,原子序号为value
@Xponge.Molecule.Set_Save_SPONGE_Input
def write_bond(self, prefix, dirname):
    bonds = []
    for bond in self.bonded_forces["bond"]:
        order = list(range(2))
        if bond.k != 0:
            if self.atom_index[bond.atoms[order[0]]] > self.atom_index[bond.atoms[order[-1]]]:
                temp_order = order[::-1]
            else:
                temp_order = order
            bonds.append("%d %d %f %f"%(self.atom_index[bond.atoms[temp_order[0]]]
            , self.atom_index[bond.atoms[temp_order[1]]], bond.k, bond.b))
    
    if (bonds):
        towrite = "%d\n"%len(bonds)
        bonds.sort(key = lambda x: list(map(int, x.split()[:2])))
        towrite += "\n".join(bonds)
        
        f = open(os.path.join(dirname, prefix + "_bond.txt"),"w")
        f.write(towrite)
        f.close()

复杂的则以AMBER力场的二面角为例

import Xponge

#AMBER力场的二面角包括恰当和非恰当两类
#恰当二面角参数分别是名字、成键关系、性质、是否是必须的和可重复的参数(恰当二面角部分参数可重复给定并叠加计算)
ProperType = Generate_New_Bonded_Force_Type("dihedral", "1-2-3-4", {"k":float, "phi0": float, "periodicity":int}, True, ["k", "phi0", "periodicity"])

ProperType.Set_Property_Unit("k", "energy", "kcal/mol")
ProperType.Set_Property_Unit("phi0", "angle", "rad")


ImproperType = Generate_New_Bonded_Force_Type("improper", "1-3-2-3", {"k":float, "phi0": float, "periodicity":int}, False)
#非恰当二面角是复杂的拓扑,需要手动指定
#该矩阵的意思是成键的第i个原子和第j个原子之间的关系,只有上三角的值有效,例如ImproperType.topology_matrix[1][2]指成键的第2个原子和第3个原子是1-2关系
ImproperType.topology_matrix = [[1, 3, 2, 3],
                                [1, 1, 2, 3],
                                [1, 1, 1, 2],
                                [1, 1, 1, 1]]

ImproperType.Set_Property_Unit("k", "energy", "kcal/mol")
ImproperType.Set_Property_Unit("phi0", "angle", "rad")

#确认相同的力。默认是正倒序,例如ProperType中的A-B-C-D和D-C-B-A是同一种力
#如果不是默认情况,需要手动设置,接受两个参数cls(自己的类型,此处即ImproperType)和atom_list(可能是一个"A-B-C-D"的字符串,也可能是[A, B, C, D]的列表)
#输出是一个列表,包含了所有的相同的atom_list
#例如,对于非恰当二面角,A-B-C-D中A、B、D可以随意互换位置
@ImproperType.Set_Same_Force_Function
def Improper_Same_Force(cls, atom_list):
    
    temp = []
    if type(atom_list) == str:
        atom_list_temp = [ atom.strip() for atom in atom_list.split("-")]
        center_atom = atom_list_temp.pop(2)
        for atom_permutation in Xponge.permutations(atom_list_temp):
            atom_permutation = list(atom_permutation)
            atom_permutation.insert(2, center_atom)
            temp.append("-".join(atom_permutation))
    else:
        atom_list_temp = [ atom for atom in atom_list]
        center_atom = atom_list_temp.pop(2)
        for atom_permutation in Xponge.permutations(atom_list_temp):
            atom_permutation = list(atom_permutation)
            atom_permutation.insert(2, center_atom)
            temp.append(atom_permutation)
    return temp

#输出
#对于self.bonded_forces["dihedral"]的元素,因为设置了可叠加的性质,叠加度属性由multiple_numbers获取,每个值由对应的性质+"s"获取
@Molecule.Set_Save_SPONGE_Input
def write_dihedral(self, prefix, dirname):
    dihedrals = []
    for dihedral in self.bonded_forces.get("dihedral", []):
        order = list(range(4))
        if self.atom_index[dihedral.atoms[order[0]]] > self.atom_index[dihedral.atoms[order[-1]]]:
            temp_order = order[::-1]
        else:
            temp_order = order
        for i in range(dihedral.multiple_numbers):            
            if dihedral.ks[i] != 0:
                dihedrals.append("%d %d %d %d %d %f %f"%(self.atom_index[dihedral.atoms[temp_order[0]]]
                , self.atom_index[dihedral.atoms[temp_order[1]]], self.atom_index[dihedral.atoms[temp_order[2]]]
                , self.atom_index[dihedral.atoms[temp_order[3]]], dihedral.periodicitys[i], dihedral.ks[i], dihedral.phi0s[i]))
 
    for dihedral in self.bonded_forces.get("improper", []):
        order = list(range(4))
        if dihedral.k != 0:
            if self.atom_index[dihedral.atoms[order[0]]] > self.atom_index[dihedral.atoms[order[-1]]]:
                temp_order = order[::-1]
            else:
                temp_order = order
            dihedrals.append("%d %d %d %d %d %f %f"%(self.atom_index[dihedral.atoms[temp_order[0]]]
            , self.atom_index[dihedral.atoms[temp_order[1]]], self.atom_index[dihedral.atoms[temp_order[2]]]
            , self.atom_index[dihedral.atoms[temp_order[3]]], dihedral.periodicity, dihedral.k, dihedral.phi0))
        
    
    if (dihedrals):
        towrite = "%d\n"%len(dihedrals)
        dihedrals.sort(key = lambda x: list(map(float, x.split())))
        towrite += "\n".join(dihedrals)
        
        f = open(os.path.join(dirname, prefix + "_dihedral.txt"),"w")
        f.write(towrite)
        f.close()
基于残基判断的(residue-specific)

以ff19SB力场中的cmap为例(RCMAP)

import Xponge
#仍然创建一个种类
CMAP = Xponge.Generate_New_Bonded_Force_Type("residue_specific_cmap", "1-2-3-4-5", {}, False)

#所有信息相当于都自己处理
CMAP.Residue_Map = {}

@Xponge.Molecule.Set_Save_SPONGE_Input
def write_cmap(self, prefix, dirname):
    cmaps = []
    resolutions = []
    used_types = []
    used_types_map = {}
    atoms = []
    for cmap in self.bonded_forces["residue_specific_cmap"]:
        resname = cmap.atoms[2].residue.type.name
        #通过判断2号原子的resname来决定信息
        if resname in CMAP.Residue_Map.keys():
            if CMAP.Residue_Map[resname]["count"] not in used_types_map.keys():
                used_types_map[CMAP.Residue_Map[resname]["count"]] = len(used_types)
                used_types.append(CMAP.Residue_Map[resname]["parameters"])
                resolutions.append(str(CMAP.Residue_Map[resname]["resolution"]))
            cmaps.append("%d %d %d %d %d %d"%(self.atom_index[cmap.atoms[0]], self.atom_index[cmap.atoms[1]],
            self.atom_index[cmap.atoms[2]], self.atom_index[cmap.atoms[3]], 
            self.atom_index[cmap.atoms[4]], used_types_map[CMAP.Residue_Map[resname]["count"]]))
            
    
    if (cmap):
        towrite = "%d %d\n"%(len(cmaps), len(resolutions))
        towrite += " ".join(resolutions) + "\n\n"
        
        for i in range(len(used_types_map)):
            resol = int(resolutions[i])
            for j in range(resol):
                for k in range(resol):
                    towrite += "%f "%used_types[i][j * 24 + k]
                towrite += "\n"
            towrite += "\n"
        
        towrite += "\n".join(cmaps)
        
        f = open(os.path.join(dirname, prefix + "_cmap.txt"),"w")
        f.write(towrite)
        f.close()
类型3 虚拟原子

虚拟原子是被当作一种成键作用对待的。目前添加新的虚拟原子需要修改Xponge.forcefield.BASE.VIRTUAL_ATOM

import Xponge

#创建成键相互作用,其中参数包含atomN,N从0到(依赖的原子数-1),作为判断依赖的原子
VirtualType2 = Xponge.Generate_New_Bonded_Force_Type("vatom2", "1", {"atom0":int, "atom1":int, "atom2":int, "k1":float, "k2":float}, False)
#在Xponge.GlobalSetting.VirtualAtomTypes注册:key是名字,value是依赖的原子数
Xponge.GlobalSetting.VirtualAtomTypes["vatom2"] = 3

@GlobalSetting.Molecule.Set_Save_SPONGE_Input
def write_virtual_atoms(self, prefix, dirname):
    vatoms = []
    for vatom in self.bonded_forces["vatom2"]:
        vatoms.append("2 %d %d %d %d %f %f"%(self.atom_index[vatom.atoms[0]],
            self.atom_index[vatom.atoms[0]] + vatom.atom0, 
            self.atom_index[vatom.atoms[0]] + vatom.atom1,
            self.atom_index[vatom.atoms[0]] + vatom.atom2,
            vatom.k1, vatom.k2))
    
    if (vatoms):
        towrite = ""
        towrite += "\n".join(vatoms)
        
        f = open(os.path.join(dirname, prefix + "_vatom.txt"),"w")
        f.write(towrite)
        f.close()

B3. 新的原子类型推断

from Xponge import assign

#注册新的推测规则
GAFF = assign.Judge_Rule("GAFF")

#通过GAFF.Add_Judge_Rule(原子种类)进行判断
#程序会按添加顺序从上到下依次判断,直到判断True为止,返回此时的原子种类
#判断函数接受两个参数:需要判断的原子的编号i和判断任务Assign
#Assign.Atom_Judge(i, "O1"): 判断i号原子是不是氧元素且只有一根键
@GAFF.Add_Judge_Rule("o")
def temp(i, Assign):
    return Assign.Atom_Judge(i, "O1")

#Assign.Atom_Judge(i, "O2"): 判断i号原子是不是氧元素且只有两根键
#"RG3" in Assign.atom_marker[i].keys():判断"RG3"有没有在i号原子的标志里,也即是不是在三元环上
#标志由Assign.Determine_Ring_And_Bond_Type()产生,key是标志,value是标志的数量
@GAFF.Add_Judge_Rule("op")
def temp(i, Assign):
    return Assign.Atom_Judge(i, "O2") and "RG3" in Assign.atom_marker[i].keys()

@GAFF.Add_Judge_Rule("oq")
def temp(i, Assign):
    return Assign.Atom_Judge(i, "O2") and "RG4" in Assign.atom_marker[i].keys()

#更复杂的,寻找连接的原子是否是氢
#Assign.bonds[i]是一个字典,key是连接原子的编号,value是成键的键级
@GAFF.Add_Judge_Rule("oh")
def temp(i, Assign):
    tofind = False
    if Assign.Atom_Judge(i, "O2") or Assign.Atom_Judge(i, "O3"):
        for bonded_atom in Assign.bonds[i].keys():
            if Assign.Atom_Judge(bonded_atom, "H1"):
                tofind = True
                break    
    return tofind

@GAFF.Add_Judge_Rule("os")
def temp(i, Assign):
    return Assign.Atom_Judge(i, "O2")

定义好后,即可对Assign使用Determine_Atom_Type("GAFF")进行原子种类推断

B4. 新的力场组合

新的力场组合除了加载新的力场形式和力场参数外,还需要设置一些"描述性"的力场设置,例如 AMBER力场中,默认的LJ组合规则、14作用设置、排除到4号连接原子

from Xponge import *
from Xponge.forcefield.BASE import CHARGE, MASS, LJ, BOND, ANGLE, DIHEDRAL, NB14, VIRTUAL_ATOM, EXCLUDE
import os

AMBER_DATA_DIR = os.path.dirname(__file__)

LJ.LJType.combining_method_A = LJ.Lorentz_Berthelot_For_A
LJ.LJType.combining_method_B = LJ.Lorents_Berthelot_For_B

NB14.NB14Type.New_From_String(r"""
name    kLJ     kee
X-X     0.5     0.833333
""")
EXCLUDE.Exclude(4)

CHARMM27力场中,默认的LJ组合规则、二面角设置、不需要的力场判断、排除到4号连接原子

from Xponge import *
from Xponge.forcefield.BASE import CHARGE, MASS, LJ, BOND, DIHEDRAL, NB14, NB14_EXTRA, UREY_BRADLEY, IMPROPER, VIRTUAL_ATOM, ACMAP, EXCLUDE
import OS

CHARMM27_DATA_DIR = os.path.dirname(__file__)

LJ.LJType.combining_method_A = LJ.Lorentz_Berthelot_For_A
LJ.LJType.combining_method_B = LJ.Lorents_Berthelot_For_B

GlobalSetting.Set_Invisible_Bonded_Forces(["improper"])
DIHEDRAL.ProperType.New_From_String(r"""
name        k reset  phi0 periodicity
X-X-X-X     0 0      0    0
""")
EXCLUDE.Exclude(4)

结构处理

A. 内坐标更改

A1. 更改键长

Impose_Bond可以更改键长

import Xponge
import Xponge.forcefield.AMBER.ff14SB

t = ACE + NME

Save_Mol2(t, "imposing.mol2")

Impose_Bond(t, t.residues[0].C, t.residues[1].N, 5)

Save_Mol2(t, "imposed.mol2")

#不同残基之间可以impose_bond任意两个原子,按残基分别移动
Impose_Bond(t, t.residues[0].C, t.residues[1].CH3, 5)

Save_Mol2(t, "imposed2.mol2")

#同一个残基内没有键连的原子、成环互有叠加的不能impose_bond,因为不知道怎么移动
#Impose_Bond(t, t.residues[0].C, t.residues[0].H2, 5)
#AssertionError

上述产生的mol2文件在vmd中观察

imposing.mol2

imposing.mol2

imposing.mol2

A2. 更改键角

Impose_Angle可以更改键角

import Xponge
import Xponge.forcefield.AMBER.ff14SB

t = ACE + NME

#不同残基之间可以impose_bond任意两个原子,按残基分别移动
#Impose_Angle要求第2、3个原子之间符合Impose_Bond的要求
Impose_Angle(t, t.residues[0].C, t.residues[1].N, t.residues[1].CH3, 3.1415926 / 2)

Save_Mol2(t, "imposed.mol2")

产生的mol2文件在vmd中观察

imposing.mol2

A3. 更改二面角

Imporse_Dihedral可以更改二面角

import Xponge
import Xponge.forcefield.AMBER.ff14SB

t = ACE + ALA * 10 + NME

Save_Mol2(t, "imposing.mol2")
#Impose_Dihedral要求第2、3个原子之间符合Impose_Bond的要求
for i in range(1,len(t.residues)-1):
    head = t.residues[i-1]
    res = t.residues[i]
    tail = t.residues[i+1]
    Impose_Dihedral(t, head.C, res.N, res.CA, res.C, -3.1415926/3)
    Impose_Dihedral(t, res.N, res.CA, res.C, tail.N, -3.1415926/3)

Save_Mol2(t, "imposed.mol2")

改变前的mol2文件在vmd中观察(Draw Method分别使用Line、Ribbon)

imposing.mol2

imposing.mol2

改变后的mol2文件在vmd中观察(Draw Method分别使用Line、Ribbon)

imposing.mol2

imposing.mol2

B. 溶剂与离子添加

import Xponge
import Xponge.forcefield.AMBER.ff14SB
import Xponge.forcefield.AMBER.tip3p

t = NALA + ARG + NME
c = round(t.charge)

#添加溶剂盒子,距离边界x<0的5埃,y<0的10埃,z<15的埃,x>0的30埃,y>0的25埃,z>0的20埃
Process_Box(t, WAT, [5,10,15,30,25,20])

#也可以简单的提供一个数
#Process_Box(t, WAT, 30)

#替代,将残基名为"WAT"的部分替代为钾离子和氯原子
Ion_Replace(t, lambda res: res.type.name == "WAT", {CL:30 + c, K:30})

#重新排序
#非必要,只为好看
t.residues.sort(key = lambda residue: {"CL":2, "K":1, "WAT":3}.get(residue.type.name, 0))

#打印出电荷,确保没错
print(t.charge)


Save_PDB(t, "test.pdb")
Save_SPONGE_Input(t, "test")

C. 重复结构产生

暂未实现

D. 主轴旋转

import Xponge
import Xponge.forcefield.AMBER.ff14SB

t = ACE + ALA * 100 + NME

Save_Mol2(t,"before.mol2")

Molecule_Rotate(t)

Save_Mol2(t,"after.mol2")

旋转前图像(从z轴看过去)

imposing.mol2

旋转后图像(从z轴看过去)

imposing.mol2

旋转后图像稍旋转观察角度

imposing.mol2

E. 质量重分配

import Xponge
import Xponge.forcefield.AMBER.ff14SB

t = ACE + ALA + NME

import Xponge.forcefield.AMBER.tip3p
Process_Box(t, WAT, [5,10,15,30,25,20])

HMass_Repartition(t)

Save_SPONGE_Input(t, "test")

F. 残基突变

暂未实现

G. 结构堆叠

暂未实现

后处理

A. 轨迹分析

调用MDAnalysis库进行计算,需自行安装MDAnalysis

#从Xponge中import Universe来加载
from Xponge.analysis.MDAnalysis import Universe
u = Universe("test.pdb", "mdcrd.dat", "mdbox.txt")

#下面都是MDAnalysis的API
O = u.select_atoms("resname WAT and name O")
from MDAnalysis.analysis import rdf as RDF
rdf = RDF.InterRDF(O, O)
rdf.run()
import matplotlib.pyplot as plt
plt.plot(rdf.results.bins[1:], rdf.results.rdf[1:])
plt.show()

最终画出来的图像为

imposing.mol2

B. 格式转化

使用python -m Xponge -h可以获得更多信息

B1. dat2nc

将SPONGE的.dat轨迹文件转化为AMBER的.nc文件,详情见python -m Xponge dat2nc -h

B2. gro2crd

将GROMACS的.gro坐标文件转化为SPONGE的_coordinate.txt文件,详情见python -m Xponge gro2crd -h

B3. nc2rst7

将AMBER的.nc重开文件转化为AMBER的可读重开文件,详情见python -m Xponge nc2rst7 -h

B4. maskgen

调用VMD,选择原子,生成对应的原子序号,详情见python -m Xponge maskgen -h

B5. exgen

输入SPONGE的bond-like, angle-like, dihedral-like和约束文件来获得排除文件,详情见python -m Xponge exgen -h

B6. dat1frame

从SPONGE的.dat文件中抽出一帧作为SPONGE的_coordinate.txt文件,详情见python -m Xponge dat1frame -h

C. FEP处理

暂未整合

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Xponge-1.2.5.4.tar.gz (519.7 kB view details)

Uploaded Source

File details

Details for the file Xponge-1.2.5.4.tar.gz.

File metadata

  • Download URL: Xponge-1.2.5.4.tar.gz
  • Upload date:
  • Size: 519.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.6

File hashes

Hashes for Xponge-1.2.5.4.tar.gz
Algorithm Hash digest
SHA256 71ca440cd28661e1c26bcbfe70cac1f56eb888e1450a8d329f68fd8d2ebe858a
MD5 f25885ed79b8211a3f725cc10b3646bd
BLAKE2b-256 5d42a3d96747a21539bae8f6120f1abea411e39ce1b1a0202f8c4d40d7fb24b2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page