A Python package to perform pre- and post-processing of molecular simulations
Project description
Welcome to Use Xponge!
Introduction
Xponge
is a lightweight and easy-customizing python package to perform pre- and post-processing of molecular simulations.
What can Xponge do?
Xponge includes three major categories of functionality, namely, the simulation system construction, simulation data transformation and analysis, and automated workflows for complex simulations. Xponge
is mainly designed for the molecular dynamics (MD) program SPONGE[1], but it can also output some general format files such as mol2 and PDB, so it may help the other molecular modelling programs too.
Installation
Xponge can be used on all operating systems (Windows/Linux/MacOS).
1. pip install
pip install Xponge
2. source setup
-
2.1 download or clone the source of the gitee or github repository
The gitee repository is here. The github repository is here.
git clone http://gitee.com/gao_hyp_xyj_admin/xponge.git git clone http://github.com/xia-yijie/xponge.git
-
2.2 open the directory where you download or clone the repository
-
2.3 run the command
python setup.py install
Installation check
There are some unit tests in Xponge
. You can do the basic test to check whether the installation is successful like this:
Xponge test --do base -o test --verbose 1
Here, Xponge
can be replaced to python -m Xponge
, python3 -m Xponge
and so on according to your settings of the environmental variables. Some files will be generated after the test is finished.
Quickstart
Here is a simple example.
import Xponge
# Import the force field you need
import Xponge.forcefield.amber.ff14sb
# Build the molecule like this
peptide = ACE + ALA + NME
# or like this
peptide2 = NALA + ALA * 10 + CALA
# or like this
peptide3 = Xponge.Get_Peptide_From_Sequence("AAAAA")
# See the documentation for more usage!
# Save them as your favorite format
Xponge.save_pdb(peptide, "ala.pdb")
Xponge.save_mol2(peptide2, "ala12.mol2")
Xponge.save_sponge_input(peptide3, "ala5")
Then we can see ala12.mol2
in VMD:
Here is another simple example.
import Xponge
import Xponge.forcefield.amber.tip3p
box = BlockRegion(0, 0, 0, 60, 60, 60)
region_1 = BlockRegion(0, 0, 20, 20, 20, 40)
region_2 = BlockRegion(0, 0, 40, 20, 20, 60)
region_3 = BlockRegion(0, 0, 0, 20, 20, 20)
region_4 = SphereRegion(20, 10, 30, 10)
region_5 = BlockRegion(20, 0, 20, 60, 60, 60)
region_2or3 = Region(region_2, region_3, do="union")
region_4and5 = Region(region_4, region_5, do="intersect")
t = Lattice("bcc", basis_molecule=CL, scale=4)
t2 = Lattice("fcc", basis_molecule=K, scale=3)
t3 = Lattice("sc", basis_molecule=NA, scale=3)
mol = t.Create(box, region_1)
mol = t2.create(box, region_2or3, mol)
mol = t3.create(box, region_4and5, mol)
Save_PDB(mol, "out.pdb")
Then we can see out.pdb
in VMD:
Detailed usage and API documentation
All can be seen here.
Dependencies
Xponge
does not depend on other packages except numpy for its basic use.
However, there are some complicated functions rely on some other packages. If you do not install the dependent package, you can not use the related functions.
Here is the list of all packages which may be uesd:
package name | description | how to install |
---|---|---|
XpongeLib | c/c++ compiled library for Xponge | pip install XpongeLib |
pyscf [2-4] | quantum chemistry | pip install pyscf |
geometric[5] | geometry optimization | pip install geometric |
rdkit[6] | cheminformatics | conda install -c rdkit rdkit |
MDAnalysis[7-8] | trajectory analysis | pip install MDAnalysis |
mindspore[9] | AI framework for machine learning | See the official website |
mindsponge[1] | end-to-end differentiable MD | See the official website |
References
[1] Y.-P. Huang, et al. Chinese J. Chem. (2022) DOI: 10.1002/cjoc.202100456
[2] Q. Sun, et al. J. Chem. Phys. (2020) DOI: 10.1063/5.0006074
[3] Q. Sun, et al. Wiley Interdiscip. Rev. Comput. Mol. Sci. (2018) DOI: 10.1002/wcms.1340
[4] Q. Sun, J. Comp. Chem. (2015) DOI: 10.1002/jcc.23981
[5] L.-P. Wang, C.C. Song, J. Chem. Phys. (2016) DOI: 10.1063/1.4952956
[6] RDKit: Open-source cheminformatics. https://www.rdkit.org
[7] R. J. Gowers, et al. Proceedings of the 15th Python in Science Conference (2016) DOI: 10.25080/majora-629e541a-00e
[8] N. Michaud-Agrawal, et al. J. Comput. Chem. (2011) DOI: 10.1002/jcc.21787
[9] MindSpore: An Open AI Framwork. https://www.mindspore.cn/
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file Xponge-1.2.6.4.tar.gz
.
File metadata
- Download URL: Xponge-1.2.6.4.tar.gz
- Upload date:
- Size: 507.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | afaf3ed40cf29ca120a246cf6076d608eb5fbafdee18b7ec24842710ed9f2123 |
|
MD5 | f897b6aee29ac9c186cbadc1d30871f1 |
|
BLAKE2b-256 | 099261c9b2994f3fe9601e27e546bf2e7ae36cf38112670e4e5a53e126480f9c |