Run inference on Yolo Distribution Distillation model.
Project description
Yolo Ensemble Distribution Distillation
This repository contains code for running a model trained by distilling the distribution of an ensemble of Yolo teacher models into a single student models. This method improves the models performance and uncertainty estimation by leveraging the combined knowledge of multiple teacher models to distill a student model to predict a similar output distribution. The distilled model is fast with inference speed suitable for real-time apllications.
Example Usage
import torch
import cv2
import numpy as np
from yolo_ens_dist.utilz.utils import plot_boxes_cv2, plot_boxes_cv2_uncertainty, load_class_names
from yolo_ens_dist.utilz.torch_utils import do_detect
from yolo_ens_dist.model.models import Yolo_Ensemble_Distillation
conf_thresh = 0.4
nms_thresh = 0.4
height = 416
width = 416
num_classes = 10
imgfile = 'data/images/kitti/kitti_example_2.png'
weightsfile = 'weights/clean/bdd/dist/Yolo_bdd_teachers_only_1.pth'
class_names_path = 'data/bdd.names'
box_uncertainties = True
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class_names = load_class_names(class_names_path)
model = Yolo_Ensemble_Distillation(yolov3conv137weight=None, n_classes=num_classes, inference=True, temp=1, vis=True)
pretrained_dict = torch.load(weightsfile, map_location=device)
model.load_state_dict(pretrained_dict)
if device.type == 'cuda':
model.cuda()
img = cv2.imread(imgfile)
sized = cv2.resize(img, (width, height))
sized = cv2.cvtColor(sized, cv2.COLOR_BGR2RGB)
boxes = do_detect(model, sized, conf_thresh, nms_thresh, uncertainties=True)
if box_uncertainties:
output_image = plot_boxes_cv2_uncertainty(img, boxes[0][0], class_names=class_names)
else:
output_image = plot_boxes_cv2(img, boxes[0][0], class_names=class_names)
cv2.imshow("frame", output_image)
cv2.waitKey(0)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Yolo_ED2_Demo-1.0.3.tar.gz
(14.1 kB
view details)
Built Distribution
File details
Details for the file Yolo_ED2_Demo-1.0.3.tar.gz
.
File metadata
- Download URL: Yolo_ED2_Demo-1.0.3.tar.gz
- Upload date:
- Size: 14.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.6.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1c7c5a1f6b9fd7d1e81832b9befb0fb4e93c178f5702d91718b8bcd107642a69 |
|
MD5 | 48a3c8f0214498d8551749ebe3ab6eab |
|
BLAKE2b-256 | e6a8d404b42e422d32004f61d806ce6554890bdfac855f2f582e640303b3441f |
File details
Details for the file Yolo_ED2_Demo-1.0.3-py3-none-any.whl
.
File metadata
- Download URL: Yolo_ED2_Demo-1.0.3-py3-none-any.whl
- Upload date:
- Size: 15.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.6.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 197aabd25198f1f06f7c9510cdba2a8588412773f332a80297ee3c73aca93b2a |
|
MD5 | e5c8a7a2ec3210e853a0fa91e59a3620 |
|
BLAKE2b-256 | b683fa6106a41e64299015f7a4f3bd57a47714b6eacbdee91be00266703cad44 |