Skip to main content

Find the lower and upper neighbours in a pandas.Series

Project description

Find the lower and upper neighbours in a pandas.Series

pip install a-pandas-ex-closest-neighbours
    Usage:



from a_pandas_ex_closest_neighbours import pd_add_closest_neighbours

import pandas as pd

from random import choice  # random dataframe

pd_add_closest_neighbours()

sizes = list(range(1, 100))

df = pd.DataFrame([choice(sizes) for x in range(1000)])

df.columns = ['num']







    df

Out[3]:

     num

0     17

1     32

2     17

3     90

4     76

..   ...

995   69

996   82

997   65

998   84

999   62

[1000 rows x 1 columns]





min_neighbours2, max_neighbours2 = df.num.s_find_closest_neighbours(value=72, convertdtypes=True,

                                                   accept_exact_match=False)

min_neighbours2

Out[8]:

    lower_index  lower_value

0            95           71

1           184           71

2           265           71

3           291           71

4           486           71

5           569           71

6           644           71

7           652           71

8           742           71

9           804           71

10          830           71

11          964           71



max_neighbours2

Out[9]:

    upper_index  upper_value

0            26           73

1            44           73

2           119           73

3           161           73

4           219           73

5           397           73

6           415           73

7           492           73

8           593           73

9           610           73

10          612           73

11          802           73















min_neighbours2, max_neighbours2 = df.num.s_find_closest_neighbours(value=72, convertdtypes=True,

                                                   accept_exact_match=True)



max_neighbours1

Out[4]:

    upper_index  upper_value

0           105           72

1           147           72

2           210           72

3           281           72

4           317           72

5           361           72

6           377           72

7           386           72

8           485           72

9           521           72

10          675           72

11          956           72

12          957           72

min_neighbours1



Out[5]:

    lower_index  lower_value

0           105           72

1           147           72

2           210           72

3           281           72

4           317           72

5           361           72

6           377           72

7           386           72

8           485           72

9           521           72

10          675           72

11          956           72

12          957           72





    Parameters:

        series:pd.Series

            Only pandas.Series

        value:Union[float,int]

            the value you want to have the closest neighbours from

        convertdtypes:bool

            converts string numbers to numbers

            (default=False)

        accept_exact_match:bool

            example:

            True: if you are passing 72, and 72 is in the Series, the minimum and maximum values will be all the same, that means: 72

            False: All cells with 72 are excluded, and you won't see 72 in the results

            (default=False)

    Returns:

        tuple

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

a_pandas_ex_closest_neighbours-0.10.tar.gz (5.6 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file a_pandas_ex_closest_neighbours-0.10.tar.gz.

File metadata

File hashes

Hashes for a_pandas_ex_closest_neighbours-0.10.tar.gz
Algorithm Hash digest
SHA256 f11987ead5a093f12f95a0d849f25678100fc3c156dd414864fda589c8604b4b
MD5 9f2f57e3c8cecd0106008ee614978362
BLAKE2b-256 451956818d1cba9ff52fc7aed568be8dfac213124bc24ba55efb86fd2ccb6186

See more details on using hashes here.

File details

Details for the file a_pandas_ex_closest_neighbours-0.10-py3-none-any.whl.

File metadata

File hashes

Hashes for a_pandas_ex_closest_neighbours-0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 31b49faec214708370d3d23bddf069bc08a84f34abd3edec872aff1b9104f4fe
MD5 756490b0e7ec3b76029cd8469a535488
BLAKE2b-256 b14c06586721d4cb7dc94f1bfd0eeea6f988ec063f04191dc140259d0123a773

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page