Skip to main content

Apply reduce against a whole Pandas Series

Project description

Apply reduce against a whole Pandas Series

pip install a-pandas-ex-column-reduce
from a_pandas_ex_column_reduce import pd_add_column_reduce

import pandas as pd

pd_add_column_reduce()

df = pd.read_csv(

    "https://raw.githubusercontent.com/pandas-dev/pandas/main/doc/data/titanic.csv"

)

df = df[:10]

result1 = df.PassengerId.s_column_reduce(

    expression="str(x) +  str(y)",  # the expression has to be passed as a string and must contain x/y

    own_value_against_own_value=True,  # if False: skips when "index of x == index of y"

    ignore_exceptions=True,  # will ignore the execution of the expression and will go on

    print_exceptions=True,

)

print(f"\n\n{result1=}")



result1=0     112345678910

1     212345678910

2     312345678910

3     412345678910

4     512345678910

5     612345678910

6     712345678910

7     812345678910

8     912345678910

9    1012345678910

dtype: object





result2 = df.PassengerId.s_column_reduce(

    expression="x + y",

    own_value_against_own_value=True,

    ignore_exceptions=True,

    print_exceptions=True,

)

print(f"\n\n{result2=}")



result2=0    56

1    57

2    58

3    59

4    60

5    61

6    62

7    63

8    64

9    65

dtype: int64





# Updates the column after each iteration

result3 = df.PassengerId.s_column_reduce_update(

    expression="x + y if y > 5 else x",

    own_value_against_own_value=True,

    ignore_exceptions=True,

    print_exceptions=True,

)





print(f"\n\n{result3=}")





result3=0       41

1       83

2      167

3      335

4      671

5     1343

6     2681

7     5356

8    10705

9    21402

Name: PassengerId, dtype: int64





# If you use a non-built-in function, you have to pass the function as an argument, and use it as "func" in your expression

# An example using shapely (merging different polygons)

from shapely.ops import unary_union

import shapely

polyshape = []

for k in range(10):

    xmin = k * 10 + 5

    ymin = k * 10 + 5

    xmax = k * 20 + 10

    ymax = k * 20 + 10

    coordsalls = [[xmin, ymin], [xmax, ymin], [xmax, ymax], [xmin, ymax], [xmin, ymin]]

    po = shapely.geometry.Polygon(coordsalls)

    polyshape.append(po)

	

df2 = pd.DataFrame(polyshape)

print(f"\n\n{df2=}")

dfj = df2[0].s_column_reduce(

    expression="func([x,y]) if x.intersects(y) else x",

    func=unary_union,

    own_value_against_own_value=True,

    ignore_exceptions=True,

)

print(f"\n\n{dfj=}")

dfj2 = df2[0].s_column_reduce_update(

    expression="func([x,y]) if x.intersects(y) else x",

    func=unary_union,

    own_value_against_own_value=False,

    ignore_exceptions=True,

)

print(f"\n\n{dfj2=}")





df2=                                                   0

0            POLYGON ((5 5, 10 5, 10 10, 5 10, 5 5))

1      POLYGON ((15 15, 30 15, 30 30, 15 30, 15 15))

2      POLYGON ((25 25, 50 25, 50 50, 25 50, 25 25))

3      POLYGON ((35 35, 70 35, 70 70, 35 70, 35 35))

4      POLYGON ((45 45, 90 45, 90 90, 45 90, 45 45))

5  POLYGON ((55 55, 110 55, 110 110, 55 110, 55 55))

6  POLYGON ((65 65, 130 65, 130 130, 65 130, 65 65))

7  POLYGON ((75 75, 150 75, 150 150, 75 150, 75 75))

8  POLYGON ((85 85, 170 85, 170 170, 85 170, 85 85))

9  POLYGON ((95 95, 190 95, 190 190, 95 190, 95 95))



dfj=0              POLYGON ((5 5, 5 10, 10 10, 10 5, 5 5))

1    POLYGON ((55 90, 55 110, 65 110, 65 130, 75 13...

2    POLYGON ((45 90, 55 90, 55 110, 65 110, 65 130...

3    POLYGON ((55 90, 55 110, 65 110, 65 130, 75 13...

4    POLYGON ((35 70, 45 70, 45 90, 55 90, 55 110, ...

5    POLYGON ((45 70, 45 90, 55 90, 55 110, 65 110,...

6    POLYGON ((45 70, 45 90, 55 90, 55 110, 65 110,...

7    POLYGON ((45 90, 55 90, 55 110, 65 110, 65 130...

8    POLYGON ((90 55, 90 45, 45 45, 45 90, 55 90, 5...

9    POLYGON ((130 65, 110 65, 110 55, 55 55, 55 11...

dtype: object



dfj2=0              POLYGON ((5 5, 10 5, 10 10, 5 10, 5 5))

1    POLYGON ((45 70, 45 90, 55 90, 55 110, 65 110,...

2    POLYGON ((90 45, 70 45, 70 35, 50 35, 50 25, 3...

3    POLYGON ((90 45, 70 45, 70 35, 50 35, 50 25, 3...

4    POLYGON ((90 45, 70 45, 70 35, 50 35, 50 25, 3...

5    POLYGON ((90 45, 70 45, 70 35, 50 35, 50 25, 3...

6    POLYGON ((50 25, 30 25, 30 15, 15 15, 15 30, 2...

7    POLYGON ((85 150, 85 170, 95 170, 95 190, 190 ...

8    POLYGON ((85 150, 85 170, 95 170, 95 190, 190 ...

9    POLYGON ((85 150, 85 170, 95 170, 95 190, 190 ...

Name: 0, dtype: object

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

a_pandas_ex_column_reduce-0.10.tar.gz (6.0 kB view details)

Uploaded Source

Built Distribution

a_pandas_ex_column_reduce-0.10-py3-none-any.whl (7.4 kB view details)

Uploaded Python 3

File details

Details for the file a_pandas_ex_column_reduce-0.10.tar.gz.

File metadata

File hashes

Hashes for a_pandas_ex_column_reduce-0.10.tar.gz
Algorithm Hash digest
SHA256 7d4cf1b9fe1b8bb933dd209c34fcb4f15d2a23f3e1398a2a3b74bac18afcd17b
MD5 aed33315c6e5a6ad844d7613fe363aef
BLAKE2b-256 b1152719085482afdc2ea126d7f8288b3917f5304b4a5026bac5a76066a57d45

See more details on using hashes here.

Provenance

File details

Details for the file a_pandas_ex_column_reduce-0.10-py3-none-any.whl.

File metadata

File hashes

Hashes for a_pandas_ex_column_reduce-0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 2553cb7a33ad5a258300cae8d722ae4583cdb203f70b6aa3352a8125760bb091
MD5 1b02916c6d10b396debb14421df62c82
BLAKE2b-256 08db3a495ce5bec53acd2f56e236909c9cb80fe67a4279711fc61acd18ccf6cb

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page