Skip to main content

Some useful methods for columns / index in Pandas DataFrames

Project description

Some useful Pandas methods for df.index and df.columns

pip install a-pandas-ex-columns-and-index 
from a_pandas_ex_columns_and_index import pd_add_index_and_columns

pd_add_index_and_columns()

import pandas as pd

df = pd.read_csv("https://github.com/pandas-dev/pandas/raw/main/doc/data/air_quality_long.csv")

The code above will add some new methods to your df

  • df.d_swap_2_columns

  • df.ds_sort_by_str_length

  • df.d_insert_column_before_another

  • df.ds_reverse

  • df.d_add_prefix_to_column_when_regex_match

  • df.d_add_prefix_to_index_when_regex_match

  • df.d_filter_df_by_regex_in_index

  • df.d_filter_df_by_regex_in_columns

  • df.d_columns_upper

  • df.d_index_upper

  • df.d_index_lower

  • df.d_columns_lower

  • df.d_make_columns_dot_compatible

  • df.d_natsort_index

  • df.d_natort_columns

  • df.d_natsort_df_by_column

  • d_rename_index

  • d_rename_columns

All methods added to pandas have one of this prefixes:

  • ds_ (for DataFrames and Series)

  • s_ (only for Series)

  • d_ (only for DataFrames)

df.d_swap_2_columns

df.columns

Out[3]: 

Index(['city', 'country', 'date.utc', 'location', 'parameter', 'value',

       'unit'],

      dtype='object')

print(df)

           city country                   date.utc  ... parameter value   unit

0     Antwerpen      BE  2019-06-18 06:00:00+00:00  ...      pm25  18.0  µg/m³

1     Antwerpen      BE  2019-06-17 08:00:00+00:00  ...      pm25   6.5  µg/m³

2     Antwerpen      BE  2019-06-17 07:00:00+00:00  ...      pm25  18.5  µg/m³

3     Antwerpen      BE  2019-06-17 06:00:00+00:00  ...      pm25  16.0  µg/m³

4     Antwerpen      BE  2019-06-17 05:00:00+00:00  ...      pm25   7.5  µg/m³

         ...     ...                        ...  ...       ...   ...    ...

5267     London      GB  2019-04-09 06:00:00+00:00  ...       no2  41.0  µg/m³

5268     London      GB  2019-04-09 05:00:00+00:00  ...       no2  41.0  µg/m³

5269     London      GB  2019-04-09 04:00:00+00:00  ...       no2  41.0  µg/m³

5270     London      GB  2019-04-09 03:00:00+00:00  ...       no2  67.0  µg/m³

5271     London      GB  2019-04-09 02:00:00+00:00  ...       no2  67.0  µg/m³

[5272 rows x 7 columns]

df2=df.d_swap_2_columns('city', 'country')

print(df2.columns)

print(df2)

Index(['country', 'city', 'date.utc', 'location', 'parameter', 'value',

       'unit'],

      dtype='object')

     country       city                   date.utc  ... parameter value   unit

0         BE  Antwerpen  2019-06-18 06:00:00+00:00  ...      pm25  18.0  µg/m³

1         BE  Antwerpen  2019-06-17 08:00:00+00:00  ...      pm25   6.5  µg/m³

2         BE  Antwerpen  2019-06-17 07:00:00+00:00  ...      pm25  18.5  µg/m³

3         BE  Antwerpen  2019-06-17 06:00:00+00:00  ...      pm25  16.0  µg/m³

4         BE  Antwerpen  2019-06-17 05:00:00+00:00  ...      pm25   7.5  µg/m³

      ...        ...                        ...  ...       ...   ...    ...

5267      GB     London  2019-04-09 06:00:00+00:00  ...       no2  41.0  µg/m³

5268      GB     London  2019-04-09 05:00:00+00:00  ...       no2  41.0  µg/m³

5269      GB     London  2019-04-09 04:00:00+00:00  ...       no2  41.0  µg/m³

5270      GB     London  2019-04-09 03:00:00+00:00  ...       no2  67.0  µg/m³

5271      GB     London  2019-04-09 02:00:00+00:00  ...       no2  67.0  µg/m³

[5272 rows x 7 columns]

df.ds_sort_by_str_length

df

Out[3]: 

           city country                   date.utc  ... parameter value   unit

0     Antwerpen      BE  2019-06-18 06:00:00+00:00  ...      pm25  18.0  µg/m³

1     Antwerpen      BE  2019-06-17 08:00:00+00:00  ...      pm25   6.5  µg/m³

2     Antwerpen      BE  2019-06-17 07:00:00+00:00  ...      pm25  18.5  µg/m³

3     Antwerpen      BE  2019-06-17 06:00:00+00:00  ...      pm25  16.0  µg/m³

4     Antwerpen      BE  2019-06-17 05:00:00+00:00  ...      pm25   7.5  µg/m³

         ...     ...                        ...  ...       ...   ...    ...

5267     London      GB  2019-04-09 06:00:00+00:00  ...       no2  41.0  µg/m³

5268     London      GB  2019-04-09 05:00:00+00:00  ...       no2  41.0  µg/m³

5269     London      GB  2019-04-09 04:00:00+00:00  ...       no2  41.0  µg/m³

5270     London      GB  2019-04-09 03:00:00+00:00  ...       no2  67.0  µg/m³

5271     London      GB  2019-04-09 02:00:00+00:00  ...       no2  67.0  µg/m³

[5272 rows x 7 columns]

df2=df.ds_sort_by_str_length('city')

print(df2)

           city country                   date.utc  ... parameter value   unit

2635      Paris      FR  2019-05-15 05:00:00+00:00  ...       no2  46.5  µg/m³

2182      Paris      FR  2019-06-03 09:00:00+00:00  ...       no2  46.0  µg/m³

2183      Paris      FR  2019-06-03 08:00:00+00:00  ...       no2  43.9  µg/m³

2184      Paris      FR  2019-06-03 07:00:00+00:00  ...       no2  50.0  µg/m³

2185      Paris      FR  2019-06-03 06:00:00+00:00  ...       no2  44.1  µg/m³

         ...     ...                        ...  ...       ...   ...    ...

3554  Antwerpen      BE  2019-05-19 15:00:00+00:00  ...       no2  33.0  µg/m³

3555  Antwerpen      BE  2019-05-19 14:00:00+00:00  ...       no2  23.0  µg/m³

3556  Antwerpen      BE  2019-05-19 13:00:00+00:00  ...       no2  14.5  µg/m³

3548  Antwerpen      BE  2019-05-19 21:00:00+00:00  ...       no2  12.5  µg/m³

0     Antwerpen      BE  2019-06-18 06:00:00+00:00  ...      pm25  18.0  µg/m³

[5272 rows x 7 columns]

d_insert_column_before_another

df

Out[6]: 

           city country                   date.utc  ... parameter value   unit

0     Antwerpen      BE  2019-06-18 06:00:00+00:00  ...      pm25  18.0  µg/m³

1     Antwerpen      BE  2019-06-17 08:00:00+00:00  ...      pm25   6.5  µg/m³

2     Antwerpen      BE  2019-06-17 07:00:00+00:00  ...      pm25  18.5  µg/m³

3     Antwerpen      BE  2019-06-17 06:00:00+00:00  ...      pm25  16.0  µg/m³

4     Antwerpen      BE  2019-06-17 05:00:00+00:00  ...      pm25   7.5  µg/m³

         ...     ...                        ...  ...       ...   ...    ...

5267     London      GB  2019-04-09 06:00:00+00:00  ...       no2  41.0  µg/m³

5268     London      GB  2019-04-09 05:00:00+00:00  ...       no2  41.0  µg/m³

5269     London      GB  2019-04-09 04:00:00+00:00  ...       no2  41.0  µg/m³

5270     London      GB  2019-04-09 03:00:00+00:00  ...       no2  67.0  µg/m³

5271     London      GB  2019-04-09 02:00:00+00:00  ...       no2  67.0  µg/m³

[5272 rows x 7 columns]

df.d_insert_column_before_another(df.city + df.country, 'city_country', 'value')

Out[7]: 

           city country                   date.utc  ... city_country value   unit

0     Antwerpen      BE  2019-06-18 06:00:00+00:00  ...  AntwerpenBE  18.0  µg/m³

1     Antwerpen      BE  2019-06-17 08:00:00+00:00  ...  AntwerpenBE   6.5  µg/m³

2     Antwerpen      BE  2019-06-17 07:00:00+00:00  ...  AntwerpenBE  18.5  µg/m³

3     Antwerpen      BE  2019-06-17 06:00:00+00:00  ...  AntwerpenBE  16.0  µg/m³

4     Antwerpen      BE  2019-06-17 05:00:00+00:00  ...  AntwerpenBE   7.5  µg/m³

         ...     ...                        ...  ...          ...   ...    ...

5267     London      GB  2019-04-09 06:00:00+00:00  ...     LondonGB  41.0  µg/m³

5268     London      GB  2019-04-09 05:00:00+00:00  ...     LondonGB  41.0  µg/m³

5269     London      GB  2019-04-09 04:00:00+00:00  ...     LondonGB  41.0  µg/m³

5270     London      GB  2019-04-09 03:00:00+00:00  ...     LondonGB  67.0  µg/m³

5271     London      GB  2019-04-09 02:00:00+00:00  ...     LondonGB  67.0  µg/m³

[5272 rows x 8 columns]

df.ds_reverse

df

Out[3]: 

           city country                   date.utc  ... parameter value   unit

0     Antwerpen      BE  2019-06-18 06:00:00+00:00  ...      pm25  18.0  µg/m³

1     Antwerpen      BE  2019-06-17 08:00:00+00:00  ...      pm25   6.5  µg/m³

2     Antwerpen      BE  2019-06-17 07:00:00+00:00  ...      pm25  18.5  µg/m³

3     Antwerpen      BE  2019-06-17 06:00:00+00:00  ...      pm25  16.0  µg/m³

4     Antwerpen      BE  2019-06-17 05:00:00+00:00  ...      pm25   7.5  µg/m³

         ...     ...                        ...  ...       ...   ...    ...

5267     London      GB  2019-04-09 06:00:00+00:00  ...       no2  41.0  µg/m³

5268     London      GB  2019-04-09 05:00:00+00:00  ...       no2  41.0  µg/m³

5269     London      GB  2019-04-09 04:00:00+00:00  ...       no2  41.0  µg/m³

5270     London      GB  2019-04-09 03:00:00+00:00  ...       no2  67.0  µg/m³

5271     London      GB  2019-04-09 02:00:00+00:00  ...       no2  67.0  µg/m³

[5272 rows x 7 columns]

df.ds_reverse()

Out[4]: 

           city country                   date.utc  ... parameter value   unit

5271     London      GB  2019-04-09 02:00:00+00:00  ...       no2  67.0  µg/m³

5270     London      GB  2019-04-09 03:00:00+00:00  ...       no2  67.0  µg/m³

5269     London      GB  2019-04-09 04:00:00+00:00  ...       no2  41.0  µg/m³

5268     London      GB  2019-04-09 05:00:00+00:00  ...       no2  41.0  µg/m³

5267     London      GB  2019-04-09 06:00:00+00:00  ...       no2  41.0  µg/m³

         ...     ...                        ...  ...       ...   ...    ...

4     Antwerpen      BE  2019-06-17 05:00:00+00:00  ...      pm25   7.5  µg/m³

3     Antwerpen      BE  2019-06-17 06:00:00+00:00  ...      pm25  16.0  µg/m³

2     Antwerpen      BE  2019-06-17 07:00:00+00:00  ...      pm25  18.5  µg/m³

1     Antwerpen      BE  2019-06-17 08:00:00+00:00  ...      pm25   6.5  µg/m³

0     Antwerpen      BE  2019-06-18 06:00:00+00:00  ...      pm25  18.0  µg/m³

[5272 rows x 7 columns]

df.d_add_prefix_to_column_when_regex_match

df

Out[8]: 

           city country                   date.utc  ... parameter value   unit

0     Antwerpen      BE  2019-06-18 06:00:00+00:00  ...      pm25  18.0  µg/m³

1     Antwerpen      BE  2019-06-17 08:00:00+00:00  ...      pm25   6.5  µg/m³

2     Antwerpen      BE  2019-06-17 07:00:00+00:00  ...      pm25  18.5  µg/m³

3     Antwerpen      BE  2019-06-17 06:00:00+00:00  ...      pm25  16.0  µg/m³

4     Antwerpen      BE  2019-06-17 05:00:00+00:00  ...      pm25   7.5  µg/m³

         ...     ...                        ...  ...       ...   ...    ...

5267     London      GB  2019-04-09 06:00:00+00:00  ...       no2  41.0  µg/m³

5268     London      GB  2019-04-09 05:00:00+00:00  ...       no2  41.0  µg/m³

5269     London      GB  2019-04-09 04:00:00+00:00  ...       no2  41.0  µg/m³

5270     London      GB  2019-04-09 03:00:00+00:00  ...       no2  67.0  µg/m³

5271     London      GB  2019-04-09 02:00:00+00:00  ...       no2  67.0  µg/m³

[5272 rows x 7 columns]

df.d_add_prefix_to_column_when_regex_match(prefix='aa_', regular_expression='^c')

Out[9]: 

        aa_city aa_country                   date.utc  ... parameter value   unit

0     Antwerpen         BE  2019-06-18 06:00:00+00:00  ...      pm25  18.0  µg/m³

1     Antwerpen         BE  2019-06-17 08:00:00+00:00  ...      pm25   6.5  µg/m³

2     Antwerpen         BE  2019-06-17 07:00:00+00:00  ...      pm25  18.5  µg/m³

3     Antwerpen         BE  2019-06-17 06:00:00+00:00  ...      pm25  16.0  µg/m³

4     Antwerpen         BE  2019-06-17 05:00:00+00:00  ...      pm25   7.5  µg/m³

         ...        ...                        ...  ...       ...   ...    ...

5267     London         GB  2019-04-09 06:00:00+00:00  ...       no2  41.0  µg/m³

5268     London         GB  2019-04-09 05:00:00+00:00  ...       no2  41.0  µg/m³

5269     London         GB  2019-04-09 04:00:00+00:00  ...       no2  41.0  µg/m³

5270     London         GB  2019-04-09 03:00:00+00:00  ...       no2  67.0  µg/m³

5271     London         GB  2019-04-09 02:00:00+00:00  ...       no2  67.0  µg/m³

[5272 rows x 7 columns]

df.d_add_prefix_to_index_when_regex_match

Out[12]: 

           city country                   date.utc  ... parameter value   unit

0     Antwerpen      BE  2019-06-18 06:00:00+00:00  ...      pm25  18.0  µg/m³

1     Antwerpen      BE  2019-06-17 08:00:00+00:00  ...      pm25   6.5  µg/m³

2     Antwerpen      BE  2019-06-17 07:00:00+00:00  ...      pm25  18.5  µg/m³

3     Antwerpen      BE  2019-06-17 06:00:00+00:00  ...      pm25  16.0  µg/m³

4     Antwerpen      BE  2019-06-17 05:00:00+00:00  ...      pm25   7.5  µg/m³

         ...     ...                        ...  ...       ...   ...    ...

5267     London      GB  2019-04-09 06:00:00+00:00  ...       no2  41.0  µg/m³

5268     London      GB  2019-04-09 05:00:00+00:00  ...       no2  41.0  µg/m³

5269     London      GB  2019-04-09 04:00:00+00:00  ...       no2  41.0  µg/m³

5270     London      GB  2019-04-09 03:00:00+00:00  ...       no2  67.0  µg/m³

5271     London      GB  2019-04-09 02:00:00+00:00  ...       no2  67.0  µg/m³

[5272 rows x 7 columns]

df.d_add_prefix_to_index_when_regex_match('five_', regular_expression='^5')

Out[13]: 

                city country                   date.utc  ... parameter value   unit

0          Antwerpen      BE  2019-06-18 06:00:00+00:00  ...      pm25  18.0  µg/m³

1          Antwerpen      BE  2019-06-17 08:00:00+00:00  ...      pm25   6.5  µg/m³

2          Antwerpen      BE  2019-06-17 07:00:00+00:00  ...      pm25  18.5  µg/m³

3          Antwerpen      BE  2019-06-17 06:00:00+00:00  ...      pm25  16.0  µg/m³

4          Antwerpen      BE  2019-06-17 05:00:00+00:00  ...      pm25   7.5  µg/m³

              ...     ...                        ...  ...       ...   ...    ...

five_5267     London      GB  2019-04-09 06:00:00+00:00  ...       no2  41.0  µg/m³

five_5268     London      GB  2019-04-09 05:00:00+00:00  ...       no2  41.0  µg/m³

five_5269     London      GB  2019-04-09 04:00:00+00:00  ...       no2  41.0  µg/m³

five_5270     London      GB  2019-04-09 03:00:00+00:00  ...       no2  67.0  µg/m³

five_5271     London      GB  2019-04-09 02:00:00+00:00  ...       no2  67.0  µg/m³

[5272 rows x 7 columns]

df.d_filter_df_by_regex_in_columns

df

Out[14]: 

           city country                   date.utc  ... parameter value   unit

0     Antwerpen      BE  2019-06-18 06:00:00+00:00  ...      pm25  18.0  µg/m³

1     Antwerpen      BE  2019-06-17 08:00:00+00:00  ...      pm25   6.5  µg/m³

2     Antwerpen      BE  2019-06-17 07:00:00+00:00  ...      pm25  18.5  µg/m³

3     Antwerpen      BE  2019-06-17 06:00:00+00:00  ...      pm25  16.0  µg/m³

4     Antwerpen      BE  2019-06-17 05:00:00+00:00  ...      pm25   7.5  µg/m³

         ...     ...                        ...  ...       ...   ...    ...

5267     London      GB  2019-04-09 06:00:00+00:00  ...       no2  41.0  µg/m³

5268     London      GB  2019-04-09 05:00:00+00:00  ...       no2  41.0  µg/m³

5269     London      GB  2019-04-09 04:00:00+00:00  ...       no2  41.0  µg/m³

5270     London      GB  2019-04-09 03:00:00+00:00  ...       no2  67.0  µg/m³

5271     London      GB  2019-04-09 02:00:00+00:00  ...       no2  67.0  µg/m³

[5272 rows x 7 columns]

df.d_filter_df_by_regex_in_columns('^[cu]')

Out[15]: 

           city country   unit

0     Antwerpen      BE  µg/m³

1     Antwerpen      BE  µg/m³

2     Antwerpen      BE  µg/m³

3     Antwerpen      BE  µg/m³

4     Antwerpen      BE  µg/m³

         ...     ...    ...

5267     London      GB  µg/m³

5268     London      GB  µg/m³

5269     London      GB  µg/m³

5270     London      GB  µg/m³

5271     London      GB  µg/m³

[5272 rows x 3 columns]

df.d_filter_df_by_regex_in_index

df

Out[16]: 

           city country                   date.utc  ... parameter value   unit

0     Antwerpen      BE  2019-06-18 06:00:00+00:00  ...      pm25  18.0  µg/m³

1     Antwerpen      BE  2019-06-17 08:00:00+00:00  ...      pm25   6.5  µg/m³

2     Antwerpen      BE  2019-06-17 07:00:00+00:00  ...      pm25  18.5  µg/m³

3     Antwerpen      BE  2019-06-17 06:00:00+00:00  ...      pm25  16.0  µg/m³

4     Antwerpen      BE  2019-06-17 05:00:00+00:00  ...      pm25   7.5  µg/m³

         ...     ...                        ...  ...       ...   ...    ...

5267     London      GB  2019-04-09 06:00:00+00:00  ...       no2  41.0  µg/m³

5268     London      GB  2019-04-09 05:00:00+00:00  ...       no2  41.0  µg/m³

5269     London      GB  2019-04-09 04:00:00+00:00  ...       no2  41.0  µg/m³

5270     London      GB  2019-04-09 03:00:00+00:00  ...       no2  67.0  µg/m³

5271     London      GB  2019-04-09 02:00:00+00:00  ...       no2  67.0  µg/m³

[5272 rows x 7 columns]

df.d_filter_df_by_regex_in_index(r'^5\d\d0$')

Out[17]: 

        city country                   date.utc  ... parameter value   unit

5000  London      GB  2019-04-20 16:00:00+00:00  ...       no2  48.0  µg/m³

5010  London      GB  2019-04-20 06:00:00+00:00  ...       no2  33.0  µg/m³

5020  London      GB  2019-04-19 20:00:00+00:00  ...       no2  58.0  µg/m³

5030  London      GB  2019-04-19 10:00:00+00:00  ...       no2  44.0  µg/m³

5040  London      GB  2019-04-18 23:00:00+00:00  ...       no2  61.0  µg/m³

5050  London      GB  2019-04-18 13:00:00+00:00  ...       no2  49.0  µg/m³

5060  London      GB  2019-04-18 03:00:00+00:00  ...       no2  50.0  µg/m³

5070  London      GB  2019-04-17 17:00:00+00:00  ...       no2  54.0  µg/m³

5080  London      GB  2019-04-17 07:00:00+00:00  ...       no2  51.0  µg/m³

5090  London      GB  2019-04-16 20:00:00+00:00  ...       no2  83.0  µg/m³

5100  London      GB  2019-04-16 09:00:00+00:00  ...       no2  66.0  µg/m³

5110  London      GB  2019-04-15 22:00:00+00:00  ...       no2  47.0  µg/m³

5120  London      GB  2019-04-15 12:00:00+00:00  ...       no2  27.0  µg/m³

5130  London      GB  2019-04-15 02:00:00+00:00  ...       no2  32.0  µg/m³

5140  London      GB  2019-04-14 16:00:00+00:00  ...       no2  23.0  µg/m³

5150  London      GB  2019-04-14 06:00:00+00:00  ...       no2  35.0  µg/m³

5160  London      GB  2019-04-13 20:00:00+00:00  ...       no2  29.0  µg/m³

5170  London      GB  2019-04-13 10:00:00+00:00  ...       no2  45.0  µg/m³

5180  London      GB  2019-04-13 00:00:00+00:00  ...       no2  29.0  µg/m³

5190  London      GB  2019-04-12 14:00:00+00:00  ...       no2  39.0  µg/m³

5200  London      GB  2019-04-12 04:00:00+00:00  ...       no2  33.0  µg/m³

5210  London      GB  2019-04-11 16:00:00+00:00  ...       no2  34.0  µg/m³

5220  London      GB  2019-04-11 06:00:00+00:00  ...       no2  46.0  µg/m³

5230  London      GB  2019-04-10 19:00:00+00:00  ...       no2  35.0  µg/m³

5240  London      GB  2019-04-10 09:00:00+00:00  ...       no2  35.0  µg/m³

5250  London      GB  2019-04-09 23:00:00+00:00  ...       no2  38.0  µg/m³

5260  London      GB  2019-04-09 13:00:00+00:00  ...       no2  56.0  µg/m³

5270  London      GB  2019-04-09 03:00:00+00:00  ...       no2  67.0  µg/m³

[28 rows x 7 columns]

df.d_columns_upper, df.d_columns_lower,df.d_make_columns_dot_compatible,df.d_index_upper,df.d_index_lower

print(df.columns)

print(df.d_make_columns_dot_compatible().columns)

print(df.d_columns_upper().columns)

print(df.d_columns_lower().columns)

df2=df.copy()

df2.index = df2.parameter

print(df2.index)

print(df2.d_index_upper().index)

print(df2.d_index_lower().index)

Index(['city', 'country', 'date.utc', 'location', 'parameter', 'value',

       'unit'],

      dtype='object')

Index(['city', 'country', 'date_utc', 'location', 'parameter', 'value',

       'unit'],

      dtype='object')

Index(['CITY', 'COUNTRY', 'DATE_UTC', 'LOCATION', 'PARAMETER', 'VALUE',

       'UNIT'],

      dtype='object')

Index(['city', 'country', 'date_utc', 'location', 'parameter', 'value',

       'unit'],

      dtype='object')

Index(['pm25', 'pm25', 'pm25', 'pm25', 'pm25', 'pm25', 'pm25', 'pm25', 'pm25',

       'pm25',

       ...

       'no2', 'no2', 'no2', 'no2', 'no2', 'no2', 'no2', 'no2', 'no2', 'no2'],

      dtype='object', name='parameter', length=5272)

Index(['PM25', 'PM25', 'PM25', 'PM25', 'PM25', 'PM25', 'PM25', 'PM25', 'PM25',

       'PM25',

       ...

       'NO2', 'NO2', 'NO2', 'NO2', 'NO2', 'NO2', 'NO2', 'NO2', 'NO2', 'NO2'],

      dtype='object', length=5272)

Index(['pm25', 'pm25', 'pm25', 'pm25', 'pm25', 'pm25', 'pm25', 'pm25', 'pm25',

       'pm25',

       ...

       'no2', 'no2', 'no2', 'no2', 'no2', 'no2', 'no2', 'no2', 'no2', 'no2'],

      dtype='object', length=5272)

df.d_natsort_index

df2 = df.sample(len(df)).copy()

dftempindex = df2.index[:2500].to_list()

tempvalue = df2.loc[dftempindex].parameter.copy()

tempvalue = tempvalue.apply(lambda x: str(x).upper())

df2.loc[dftempindex, 'parameter'] = tempvalue

print(df2)

df2.index = df2.parameter

print(df2.d_natsort_index())

for a,b,c,d in zip(df2.d_natsort_index(sort_numbers_after_non_numbers=True).index.to_list(), df2.d_natsort_index(lowercase_first=True).index.to_list(),df2.d_natsort_index(group_lower_and_uppercase=True).index.to_list(),df2.d_natsort_index(uppercase_first=True).index.to_list()):

    print(a,b,c,d)



no2 NO2 no2 no2

no2 NO2 no2 no2

no2 NO2 no2 no2

no2 NO2 no2 no2

no2 NO2 no2 no2

no2 NO2 no2 no2

no2 NO2 no2 no2

no2 NO2 no2 no2

no2 NO2 no2 no2

no2 NO2 no2 no2

no2 NO2 no2 no2

no2 NO2 no2 no2

no2 NO2 no2 no2

no2 NO2 no2 no2

no2 NO2 no2 no2

no2 NO2 no2 no2

no2 NO2 no2 no2

no2 NO2 no2 no2

no2 NO2 no2 no2

no2 NO2 no2 no2

no2 NO2 no2 no2

no2 NO2 no2 no2

no2 NO2 PM25 no2

no2 NO2 PM25 no2

no2 NO2 PM25 no2

no2 NO2 PM25 no2

no2 NO2 PM25 no2

no2 NO2 PM25 no2

no2 NO2 PM25 no2

no2 NO2 PM25 no2

no2 NO2 PM25 no2

no2 NO2 PM25 no2

no2 NO2 PM25 no2

no2 NO2 PM25 no2

no2 NO2 PM25 no2

no2 NO2 PM25 no2

no2 NO2 PM25 no2

no2 NO2 PM25 no2

no2 NO2 PM25 no2

no2 NO2 PM25 no2

no2 NO2 PM25 no2

no2 NO2 PM25 no2

no2 NO2 PM25 no2

no2 NO2 PM25 no2

no2 NO2 PM25 no2

no2 NO2 PM25 no2

no2 NO2 PM25 no2

no2 NO2 PM25 no2

no2 NO2 PM25 no2

df.d_natsort_df_by_column

df

Out[3]: 

           city country                   date.utc  ... parameter value   unit

0     Antwerpen      BE  2019-06-18 06:00:00+00:00  ...      pm25  18.0  µg/m³

1     Antwerpen      BE  2019-06-17 08:00:00+00:00  ...      pm25   6.5  µg/m³

2     Antwerpen      BE  2019-06-17 07:00:00+00:00  ...      pm25  18.5  µg/m³

3     Antwerpen      BE  2019-06-17 06:00:00+00:00  ...      pm25  16.0  µg/m³

4     Antwerpen      BE  2019-06-17 05:00:00+00:00  ...      pm25   7.5  µg/m³

         ...     ...                        ...  ...       ...   ...    ...

5267     London      GB  2019-04-09 06:00:00+00:00  ...       no2  41.0  µg/m³

5268     London      GB  2019-04-09 05:00:00+00:00  ...       no2  41.0  µg/m³

5269     London      GB  2019-04-09 04:00:00+00:00  ...       no2  41.0  µg/m³

5270     London      GB  2019-04-09 03:00:00+00:00  ...       no2  67.0  µg/m³

5271     London      GB  2019-04-09 02:00:00+00:00  ...       no2  67.0  µg/m³

[5272 rows x 7 columns]

df.d_natsort_df_by_column('date.utc')

Out[4]: 

           city country                   date.utc  ... parameter value   unit

176   Antwerpen      BE  2019-04-09 01:00:00+00:00  ...      pm25  76.0  µg/m³

3500      Paris      FR  2019-04-09 01:00:00+00:00  ...       no2  24.4  µg/m³

3663  Antwerpen      BE  2019-04-09 01:00:00+00:00  ...       no2  22.5  µg/m³

175   Antwerpen      BE  2019-04-09 02:00:00+00:00  ...      pm25  91.5  µg/m³

1824     London      GB  2019-04-09 02:00:00+00:00  ...      pm25  42.0  µg/m³

         ...     ...                        ...  ...       ...   ...    ...

1827      Paris      FR  2019-06-20 22:00:00+00:00  ...       no2  26.5  µg/m³

178      London      GB  2019-06-20 23:00:00+00:00  ...      pm25   7.0  µg/m³

1826      Paris      FR  2019-06-20 23:00:00+00:00  ...       no2  21.8  µg/m³

177      London      GB  2019-06-21 00:00:00+00:00  ...      pm25   7.0  µg/m³

1825      Paris      FR  2019-06-21 00:00:00+00:00  ...       no2  20.0  µg/m³

[5272 rows x 7 columns]

df.d_rename_columns / df.d_rename_index

df = pd.read_csv(    "https://github.com/pandas-dev/pandas/raw/main/doc/data/titanic.csv")



print(df)

     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked

0              1         0       3  ...   7.2500   NaN         S

1              2         1       1  ...  71.2833   C85         C

2              3         1       3  ...   7.9250   NaN         S

3              4         1       1  ...  53.1000  C123         S

4              5         0       3  ...   8.0500   NaN         S

..           ...       ...     ...  ...      ...   ...       ...

886          887         0       2  ...  13.0000   NaN         S

887          888         1       1  ...  30.0000   B42         S

888          889         0       3  ...  23.4500   NaN         S

889          890         1       1  ...  30.0000  C148         C

890          891         0       3  ...   7.7500   NaN         Q





df.d_rename_columns(Fare='Embarked',Embarked='Fare',Cabin='cabin2')

df.d_rename_index({1: 1000000,2:50022})

print(df)



         PassengerId  Survived  Pclass  ... Embarked cabin2  Fare

0                  1         0       3  ...   7.2500    NaN     S

1000000            2         1       1  ...  71.2833    C85     C

50022              3         1       3  ...   7.9250    NaN     S

3                  4         1       1  ...  53.1000   C123     S

4                  5         0       3  ...   8.0500    NaN     S

              ...       ...     ...  ...      ...    ...   ...

886              887         0       2  ...  13.0000    NaN     S

887              888         1       1  ...  30.0000    B42     S

888              889         0       3  ...  23.4500    NaN     S

889              890         1       1  ...  30.0000   C148     C

890              891         0       3  ...   7.7500    NaN     Q

[891 rows x 12 columns]



df.d_rename_columns({'Embarked': 'Fare', 'Fare' : 'Embarked', 'cabin2' : 'Cabin'})

df.index = df.index.astype('string')

df.index = 'a' + df.index

df.d_rename_index(a1000000= 1,a50022=2)

print(df)



      PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked

a0              1         0       3  ...   7.2500   NaN         S

1               2         1       1  ...  71.2833   C85         C

2               3         1       3  ...   7.9250   NaN         S

a3              4         1       1  ...  53.1000  C123         S

a4              5         0       3  ...   8.0500   NaN         S

           ...       ...     ...  ...      ...   ...       ...

a886          887         0       2  ...  13.0000   NaN         S

a887          888         1       1  ...  30.0000   B42         S

a888          889         0       3  ...  23.4500   NaN         S

a889          890         1       1  ...  30.0000  C148         C

a890          891         0       3  ...   7.7500   NaN         Q

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

a_pandas_ex_columns_and_index-0.13.tar.gz (16.0 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file a_pandas_ex_columns_and_index-0.13.tar.gz.

File metadata

File hashes

Hashes for a_pandas_ex_columns_and_index-0.13.tar.gz
Algorithm Hash digest
SHA256 6e5419e62d9a8eb9d33b16b5e9ea3e97d421a67ad1afd6fb3c55766d812762a0
MD5 d1445fd6a84e7e5eba7217830a124098
BLAKE2b-256 d184b7e02dd5436b2f85a5b2bdfd5695b1e6b2785949aed88475a44ed057fe8d

See more details on using hashes here.

File details

Details for the file a_pandas_ex_columns_and_index-0.13-py3-none-any.whl.

File metadata

File hashes

Hashes for a_pandas_ex_columns_and_index-0.13-py3-none-any.whl
Algorithm Hash digest
SHA256 11ffaffdc851db9fd35fd1642b4199a0a39c19560b76394f2ea46b31f95a97bc
MD5 7fe4f4db5573ece4aaf27a180e93aef6
BLAKE2b-256 79ec99b936f293932c1f32c0598f48c5db2b4022445b03596a2f0165d536b4c9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page