Skip to main content

Creates DataFrames from product, permutations, combinations, combinations_with_replacement with best dtype

Project description

Creates DataFrames from product, permutations, combinations, combinations_with_replacement with best dtype

# Tested with:
# Python 3.9.13
# Windows 10

pip install a-pandas-ex-combinatoric-iterators-to-df


from a_pandas_ex_combinatoric_iterators_to_df import pd_add_combinatoric_iterators_to_df
import pandas as pd
pd_add_combinatoric_iterators_to_df()

df1=pd.Q_product_to_df(iterable=list(range(256)), n=3)
df1
Out[3]: 

            0    1    2
0           0    0    0
1           0    0    1
2           0    0    2
3           0    0    3
4           0    0    4
       ...  ...  ...
16777211  255  255  251
16777212  255  255  252
16777213  255  255  253
16777214  255  255  254
16777215  255  255  255
[16777216 rows x 3 columns]

df1.dtypes
Out[4]: 
0    uint8
1    uint8
2    uint8
dtype: object


df2=pd.Q_permutations_to_df(iterable=list(range(256)), n=3)
df2
Out[5]: 
            0    1    2
0           0    1    2
1           0    1    3
2           0    1    4
3           0    1    5
4           0    1    6
       ...  ...  ...
16581115  255  254  249
16581116  255  254  250
16581117  255  254  251
16581118  255  254  252
16581119  255  254  253
[16581120 rows x 3 columns]


df3=pd.Q_combinations_to_df(iterable=list(range(256)), n=3)
df3
Out[6]: 
           0    1    2
0          0    1    2
1          0    1    3
2          0    1    4
3          0    1    5
4          0    1    6
      ...  ...  ...
2763515  251  254  255
2763516  252  253  254
2763517  252  253  255
2763518  252  254  255
2763519  253  254  255
[2763520 rows x 3 columns]

df4=pd.Q_combinations_with_replacement_to_df(iterable=list(range(256)), n=3)
df4
Out[7]: 
           0    1    2
0          0    0    0
1          0    0    1
2          0    0    2
3          0    0    3
4          0    0    4
      ...  ...  ...
2829051  253  255  255
2829052  254  254  254
2829053  254  254  255
2829054  254  255  255
2829055  255  255  255
[2829056 rows x 3 columns]

"""

Project details


Release history Release notifications | RSS feed

This version

0.10

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file a_pandas_ex_combinatoric_iterators_to_df-0.10.tar.gz.

File metadata

File hashes

Hashes for a_pandas_ex_combinatoric_iterators_to_df-0.10.tar.gz
Algorithm Hash digest
SHA256 edbbeee1b43e27aa99473b1094d4bbe2030b8246e15ce322b57fd04ffb6e13e9
MD5 3a68e6f13b0b5a70f2954ddc165a2662
BLAKE2b-256 b631dc3bbcd34ed1b41dc3816978c5bd8835568979b96c6a726fc1b3c8c62e03

See more details on using hashes here.

File details

Details for the file a_pandas_ex_combinatoric_iterators_to_df-0.10-py3-none-any.whl.

File metadata

File hashes

Hashes for a_pandas_ex_combinatoric_iterators_to_df-0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 fe241f0e0a5b4d9c5c70b4fd21f0ab4a3cfd45cdaa55e628b2d332cfe1a52747
MD5 51b2395b97a3d1696846a03dd460a9c3
BLAKE2b-256 73d55b6082411ff0ad9638696e7363143aa3a0edcd1d16e2e549d4d94672a6fb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page