Some useful methods for columns / index in Pandas DataFrames
Project description
Installation
pip install a-pandas-ex-drop-duplicates-without-pain
Usage
from a_pandas_ex_drop_duplicates_without_pain import pd_add_drop_duplicates_without_pain
pd_add_drop_duplicates_without_pain()
import pandas as pd
df = pd.read_csv("https://github.com/pandas-dev/pandas/raw/main/doc/data/air_quality_long.csv")
print(f'{df=}')
df_with_duplicates = df[['city', 'country', 'location', 'parameter', 'value','unit']].copy()
print(f'{df_with_duplicates=}')
df_without_duplicates = df_with_duplicates[['city', 'country', 'location', 'parameter', 'value', 'unit']].drop_duplicates().copy()
print(f'{df_without_duplicates=}')
df_with_duplicates['provoke_error'] = [[[1]*10]] * len(df_with_duplicates)
print(f'{df_with_duplicates=}')
df_result1 = None
df_result2 = None
try:
df_result1=df_with_duplicates.drop_duplicates()
except Exception as Err:
print(Err)
df_result2=df_with_duplicates.ds_drop_duplicates_without_pain()
print(f'{df_result1=}')
print(f'{df_result2=}')
df.parameter.ds_drop_duplicates_without_pain()
df= city country date.utc ... parameter value unit
0 Antwerpen BE 2019-06-18 06:00:00+00:00 ... pm25 18.0 µg/m³
1 Antwerpen BE 2019-06-17 08:00:00+00:00 ... pm25 6.5 µg/m³
2 Antwerpen BE 2019-06-17 07:00:00+00:00 ... pm25 18.5 µg/m³
3 Antwerpen BE 2019-06-17 06:00:00+00:00 ... pm25 16.0 µg/m³
4 Antwerpen BE 2019-06-17 05:00:00+00:00 ... pm25 7.5 µg/m³
... ... ... ... ... ... ...
5267 London GB 2019-04-09 06:00:00+00:00 ... no2 41.0 µg/m³
5268 London GB 2019-04-09 05:00:00+00:00 ... no2 41.0 µg/m³
5269 London GB 2019-04-09 04:00:00+00:00 ... no2 41.0 µg/m³
5270 London GB 2019-04-09 03:00:00+00:00 ... no2 67.0 µg/m³
5271 London GB 2019-04-09 02:00:00+00:00 ... no2 67.0 µg/m³
[5272 rows x 7 columns]
df_with_duplicates= city country location parameter value unit
0 Antwerpen BE BETR801 pm25 18.0 µg/m³
1 Antwerpen BE BETR801 pm25 6.5 µg/m³
2 Antwerpen BE BETR801 pm25 18.5 µg/m³
3 Antwerpen BE BETR801 pm25 16.0 µg/m³
4 Antwerpen BE BETR801 pm25 7.5 µg/m³
... ... ... ... ... ...
5267 London GB London Westminster no2 41.0 µg/m³
5268 London GB London Westminster no2 41.0 µg/m³
5269 London GB London Westminster no2 41.0 µg/m³
5270 London GB London Westminster no2 67.0 µg/m³
5271 London GB London Westminster no2 67.0 µg/m³
[5272 rows x 6 columns]
df_without_duplicates= city country location parameter value unit
0 Antwerpen BE BETR801 pm25 18.0 µg/m³
1 Antwerpen BE BETR801 pm25 6.5 µg/m³
2 Antwerpen BE BETR801 pm25 18.5 µg/m³
3 Antwerpen BE BETR801 pm25 16.0 µg/m³
4 Antwerpen BE BETR801 pm25 7.5 µg/m³
... ... ... ... ... ...
5087 London GB London Westminster no2 81.0 µg/m³
5090 London GB London Westminster no2 83.0 µg/m³
5091 London GB London Westminster no2 76.0 µg/m³
5092 London GB London Westminster no2 70.0 µg/m³
5098 London GB London Westminster no2 79.0 µg/m³
[819 rows x 6 columns]
df_with_duplicates= city country ... unit provoke_error
0 Antwerpen BE ... µg/m³ [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
1 Antwerpen BE ... µg/m³ [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
2 Antwerpen BE ... µg/m³ [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
3 Antwerpen BE ... µg/m³ [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
4 Antwerpen BE ... µg/m³ [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
... ... ... ... ...
5267 London GB ... µg/m³ [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
5268 London GB ... µg/m³ [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
5269 London GB ... µg/m³ [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
5270 London GB ... µg/m³ [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
5271 London GB ... µg/m³ [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
[5272 rows x 7 columns]
unhashable type: 'list'
df_result1=None
df_result2= city country ... unit provoke_error
0 Antwerpen BE ... µg/m³ [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
1 Antwerpen BE ... µg/m³ [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
2 Antwerpen BE ... µg/m³ [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
3 Antwerpen BE ... µg/m³ [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
4 Antwerpen BE ... µg/m³ [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
... ... ... ... ...
5087 London GB ... µg/m³ [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
5090 London GB ... µg/m³ [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
5091 London GB ... µg/m³ [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
5092 London GB ... µg/m³ [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
5098 London GB ... µg/m³ [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
[819 rows x 7 columns]
Out[2]:
0 pm25
1825 no2
Name: parameter, dtype: object
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file a_pandas_ex_drop_duplicates_without_pain-0.12.tar.gz
.
File metadata
- Download URL: a_pandas_ex_drop_duplicates_without_pain-0.12.tar.gz
- Upload date:
- Size: 5.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3ba174807e292c339a8ebe034fea2ee8ed976b0163362e137dd0d8002bf495fd |
|
MD5 | 075ab18aa41ce63cfb0d2bba8e5fdbe0 |
|
BLAKE2b-256 | feb6c41a27d954f7d12879faffc52242f12a3ca36a3a2cc592cf73a532fe2628 |
Provenance
File details
Details for the file a_pandas_ex_drop_duplicates_without_pain-0.12-py3-none-any.whl
.
File metadata
- Download URL: a_pandas_ex_drop_duplicates_without_pain-0.12-py3-none-any.whl
- Upload date:
- Size: 7.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9c67427e7f93be0336b3f98018c075976110ba280abc5d1bdea71adc904cad8c |
|
MD5 | a25dc29be711aeb2badfa9f25be32679 |
|
BLAKE2b-256 | dc7a4f5c0c9af8a9acf618d62eff22da371fa25a3d9fa55c921531deb66fba3c |