If you have to change a lot of arbitrary values which don't have a clear pattern, use Excel!
Project description
Quickly edit Pandas DataFrames and Series in Excel
Use this methods to quickly edit your DataFrame with MS Excel.
Of course, Pandas is a lot better than Excel, but if you have to change a lot of arbitrary values which don't have a clear pattern, a GUI is imho the best choice.
pip install a-pandas-ex-excel-edit
#Here is an example:
import pandas as pd
from a_pandas_ex_excel_edit import pd_add_excel_editor
#pd_add_excel_editor will add 2 new methods:
#pandas.Series.s_edit_in_excel
#pandas.DataFrame.d_edit_in_excel
pd_add_excel_editor()
dframe = pd.read_csv("https://raw.githubusercontent.com/pandas-dev/pandas/main/doc/data/titanic.csv")
#Let's add a row with lists, a tough data type to handle
dframe['list_in_columns'] = [[[1]*10]] * len(dframe)
PassengerId Survived ... Embarked list_in_columns
0 1 0 ... S [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
1 2 1 ... C [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
2 3 1 ... S [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
3 4 1 ... S [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
4 5 0 ... S [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
.. ... ... ... ... ...
886 887 0 ... S [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
887 888 1 ... S [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
888 889 0 ... S [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
889 890 1 ... C [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
890 891 0 ... Q [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
[891 rows x 13 columns]
dframe.dtypes
Out[6]:
PassengerId int64
Survived int64
Pclass int64
Name object
Sex object
Age float64
SibSp int64
Parch int64
Ticket object
Fare float64
Cabin object
Embarked object
list_in_columns object
dtype: object
df = dframe.d_edit_in_excel() #DataFrames
Out[7]:
PassengerId Survived ... Embarked list_in_columns
0 10001 9999 ... NOT YET [[1, 99999, 1, 1, 1, 1, 1, 1, 1, 1]]
1 10000 1 ... C [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
2 9999 1 ... NOT YET [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
3 9998 1 ... NOT YET [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
4 9997 0 ... S [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
.. ... ... ... ... ...
886 887 0 ... S [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
887 888 1 ... S [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
888 889 0 ... S [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
889 890 1 ... C [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
890 891 0 ... Q [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
[891 rows x 13 columns]
df.dtypes
Out[9]:
PassengerId uint16
Survived uint16
Pclass uint8
Name string
Sex category
Age object
SibSp uint8
Parch uint8
Ticket object
Fare float64
Cabin category
Embarked category
list_in_columns object #you can even edit lists, dicts and tuples with Excel!
dtype: object
df2 = dframe.Name.s_edit_in_excel() #Series
df2
Out[8]:
0 HANNIBAL LECTOR
1 Cumings, Mrs. John Bradley (Florence Briggs Th...
2 Heikkinen, Miss. Laina
3 Futrelle, Mrs. Jacques Heath (Lily May Peel)
4 Allen, Mr. William Henry
...
886 Montvila, Rev. Juozas
887 Graham, Miss. Margaret Edith
888 Johnston, Miss. Catherine Helen "Carrie"
889 Behr, Mr. Karl Howell
890 Dooley, Mr. Patrick
Name: Name, Length: 891, dtype: string
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file a_pandas_ex_excel_edit-0.11.tar.gz
.
File metadata
- Download URL: a_pandas_ex_excel_edit-0.11.tar.gz
- Upload date:
- Size: 6.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a8e0c9d347ffed41ab32cac7e49275ced8afa2e98b5c5e476e8989231f9b79df |
|
MD5 | 32443dc1f9bcf84f41f4ff8ae3797478 |
|
BLAKE2b-256 | 0b284ebb6f6c405412751f2d1f72b7b06b5ab4cb120b405201670bc5fe7aac5b |
File details
Details for the file a_pandas_ex_excel_edit-0.11-py3-none-any.whl
.
File metadata
- Download URL: a_pandas_ex_excel_edit-0.11-py3-none-any.whl
- Upload date:
- Size: 8.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 34cfab0d0d60e096fdd9629672f5a85bfe3ec28df9322100b7fe425f910a9e30 |
|
MD5 | 159c150c6c51ba0122d724d018a916fc |
|
BLAKE2b-256 | 1e231d2c355e40ae526a4ad089e6c47eb50ed650c69ec5eb35356a1ded509b6f |