If you have to change a lot of arbitrary values which don't have a clear pattern, use Excel!
Project description
Quickly edit Pandas DataFrames and Series in Excel
Use this methods to quickly edit your DataFrame with MS Excel.
Of course, Pandas is a lot better than Excel, but if you have to change a lot of arbitrary values which don't have a clear pattern, a GUI is imho the best choice.
pip install a-pandas-ex-excel-edit
#Here is an example:
import pandas as pd
from a_pandas_ex_excel_edit import pd_add_excel_editor
#pd_add_excel_editor will add 2 new methods:
#pandas.Series.s_edit_in_excel
#pandas.DataFrame.d_edit_in_excel
pd_add_excel_editor()
dframe = pd.read_csv("https://raw.githubusercontent.com/pandas-dev/pandas/main/doc/data/titanic.csv")
#Let's add a row with lists, a tough data type to handle
dframe['list_in_columns'] = [[[1]*10]] * len(dframe)
PassengerId Survived ... Embarked list_in_columns
0 1 0 ... S [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
1 2 1 ... C [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
2 3 1 ... S [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
3 4 1 ... S [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
4 5 0 ... S [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
.. ... ... ... ... ...
886 887 0 ... S [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
887 888 1 ... S [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
888 889 0 ... S [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
889 890 1 ... C [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
890 891 0 ... Q [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
[891 rows x 13 columns]
dframe.dtypes
Out[6]:
PassengerId int64
Survived int64
Pclass int64
Name object
Sex object
Age float64
SibSp int64
Parch int64
Ticket object
Fare float64
Cabin object
Embarked object
list_in_columns object
dtype: object
df = dframe.d_edit_in_excel() #DataFrames
Out[7]:
PassengerId Survived ... Embarked list_in_columns
0 10001 9999 ... NOT YET [[1, 99999, 1, 1, 1, 1, 1, 1, 1, 1]]
1 10000 1 ... C [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
2 9999 1 ... NOT YET [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
3 9998 1 ... NOT YET [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
4 9997 0 ... S [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
.. ... ... ... ... ...
886 887 0 ... S [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
887 888 1 ... S [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
888 889 0 ... S [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
889 890 1 ... C [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
890 891 0 ... Q [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
[891 rows x 13 columns]
df.dtypes
Out[9]:
PassengerId uint16
Survived uint16
Pclass uint8
Name string
Sex category
Age object
SibSp uint8
Parch uint8
Ticket object
Fare float64
Cabin category
Embarked category
list_in_columns object #you can even edit lists, dicts and tuples with Excel!
dtype: object
df2 = dframe.Name.s_edit_in_excel() #Series
df2
Out[8]:
0 HANNIBAL LECTOR
1 Cumings, Mrs. John Bradley (Florence Briggs Th...
2 Heikkinen, Miss. Laina
3 Futrelle, Mrs. Jacques Heath (Lily May Peel)
4 Allen, Mr. William Henry
...
886 Montvila, Rev. Juozas
887 Graham, Miss. Margaret Edith
888 Johnston, Miss. Catherine Helen "Carrie"
889 Behr, Mr. Karl Howell
890 Dooley, Mr. Patrick
Name: Name, Length: 891, dtype: string
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Close
Hashes for a_pandas_ex_excel_edit-0.11.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | a8e0c9d347ffed41ab32cac7e49275ced8afa2e98b5c5e476e8989231f9b79df |
|
MD5 | 32443dc1f9bcf84f41f4ff8ae3797478 |
|
BLAKE2b-256 | 0b284ebb6f6c405412751f2d1f72b7b06b5ab4cb120b405201670bc5fe7aac5b |
Close
Hashes for a_pandas_ex_excel_edit-0.11-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 34cfab0d0d60e096fdd9629672f5a85bfe3ec28df9322100b7fe425f910a9e30 |
|
MD5 | 159c150c6c51ba0122d724d018a916fc |
|
BLAKE2b-256 | 1e231d2c355e40ae526a4ad089e6c47eb50ed650c69ec5eb35356a1ded509b6f |