Skip to main content

Group coordinates by euclidean distance

Project description

Group coordinates by euclidean distance

from a_pandas_ex_group_coordinates_by_distance import pd_add_group_coordinates_by_distance

pd_add_group_coordinates_by_distance()

import pandas as pd



#first way, from list/tuple



coordinates = [(745.8010864257812, 519.8585205078125),

 (747.8574829101562, 522.5038452148438),

 (747.9273071289062, 517.1298828125),

 (747.9273071289062, 517.1298828125),

 (750.921142578125, 522.3074951171875),

 (756.1781005859375, 449.8744812011719),

 (757.0703125, 461.237548828125),

 (757.0703125, 461.237548828125),

 (757.1057739257812, 438.6798095703125),

 (830.8739624023438, 144.21884155273438),

 (759.8501586914062, 435.39776611328125),

 (759.8501586914062, 435.39776611328125),

 (761.2493896484375, 468.02178955078125),

 (761.2493896484375, 468.02178955078125),

 (764.5658569335938, 521.395263671875),

 (1079.3170166015625, 199.76937866210938),

 (770.1127319335938, 474.63946533203125),

 (770.3933715820312, 425.3490295410156),

 (773.7312622070312, 516.6536254882812),

 (776.908447265625, 515.5355224609375),

 (776.908447265625, 515.5355224609375),

 (778.0835571289062, 520.68896484375),

 (779.8836059570312, 519.2072143554688),

 (780.3491821289062, 420.33465576171875),

 (780.3491821289062, 420.33465576171875),

 (782.48388671875, 478.8080139160156),

 (782.48388671875, 478.8080139160156),

 (1083.74462890625, 151.22621154785156),

 (1083.74462890625, 151.22621154785156),

 (1083.74462890625, 151.22621154785156),

 (1083.74462890625, 151.22621154785156),

 (784.2761840820312, 478.5111083984375),

 (759.8501586914062, 435.39776611328125),

 (784.2761840820312, 478.5111083984375),

 (819.1412353515625, 137.67359924316406),

 (819.1412353515625, 137.67359924316406),

 (819.1412353515625, 137.67359924316406),

 (797.492919921875, 524.4356079101562),

 (825.904541015625, 125.7273941040039),

 (826.0745849609375, 149.3106231689453),

 (800.8538818359375, 446.9717102050781),

 (800.8538818359375, 446.9717102050781),

 (801.9922485351562, 517.8736572265625),

 (801.9922485351562, 517.8736572265625),

 (802.3947143554688, 520.4193725585938),

 (802.3947143554688, 520.4193725585938),

 (804.0225830078125, 519.9164428710938),

 (804.0225830078125, 519.9164428710938),

 (808.3038940429688, 431.790771484375),

 (808.3038940429688, 431.790771484375),

 (809.5233154296875, 464.2477722167969),

 (809.5233154296875, 464.2477722167969),

 (812.5013427734375, 438.7483825683594),

 (813.3584594726562, 449.6587829589844)]



df=pd.Q_group_coordinates_by_distance_df(coordinates=coordinates,max_euclidean_distance=100)

print(df)



              x           y  item

0    745.801086  519.858521     0

1    747.857483  522.503845     0

2    747.927307  517.129883     0

3    750.921143  522.307495     0

4    756.178101  449.874481     0

5    757.070312  461.237549     0

6    757.105774  438.679810     0

7    759.850159  435.397766     0

8    761.249390  468.021790     0

9    764.565857  521.395264     0

10   770.112732  474.639465     0

11   770.393372  425.349030     0

12   773.731262  516.653625     0

13   776.908447  515.535522     0

14   778.083557  520.688965     0

15   779.883606  519.207214     0

16   782.483887  478.808014     0

17   784.276184  478.511108     0

18   797.492920  524.435608     0

19   800.853882  446.971710     0

20   801.992249  517.873657     0

21   802.394714  520.419373     0

22   804.022583  519.916443     0

23   809.523315  464.247772     0

24   813.358459  449.658783     0

25   830.873962  144.218842     1

26   819.141235  137.673599     1

27   825.904541  125.727394     1

28   826.074585  149.310623     1

29  1079.317017  199.769379     2

30  1083.744629  151.226212     2





#second way, directly from DataFrame with 2 columns (column names don't matter, just the right order (x,y))

df2=pd.DataFrame(coordinates)

df3=df2.d_group_coordinates_by_distance_df(max_euclidean_distance=100)

print(df3)



              x           y  item

0    745.801086  519.858521     0

1    747.857483  522.503845     0

2    747.927307  517.129883     0

3    750.921143  522.307495     0

4    756.178101  449.874481     0

5    757.070312  461.237549     0

6    757.105774  438.679810     0

7    759.850159  435.397766     0

8    761.249390  468.021790     0

9    764.565857  521.395264     0

10   770.112732  474.639465     0

11   770.393372  425.349030     0

12   773.731262  516.653625     0

13   776.908447  515.535522     0

14   778.083557  520.688965     0

15   779.883606  519.207214     0

16   782.483887  478.808014     0

17   784.276184  478.511108     0

18   797.492920  524.435608     0

19   800.853882  446.971710     0

20   801.992249  517.873657     0

21   802.394714  520.419373     0

22   804.022583  519.916443     0

23   809.523315  464.247772     0

24   813.358459  449.658783     0

25   830.873962  144.218842     1

26   819.141235  137.673599     1

27   825.904541  125.727394     1

28   826.074585  149.310623     1

29  1079.317017  199.769379     2

30  1083.744629  151.226212     2

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file a_pandas_ex_group_coordinates_by_distance-0.10.tar.gz.

File metadata

File hashes

Hashes for a_pandas_ex_group_coordinates_by_distance-0.10.tar.gz
Algorithm Hash digest
SHA256 02f03b71b570dfe47d13c23b64c58f8187ce4c53319299cc70d630fc8b2283a7
MD5 c8e839094993c8dd36d49ef543fbb0bf
BLAKE2b-256 2f518486fe2d72760cae1ad3099f230580d23600eefa0ce762d242fa37e9984c

See more details on using hashes here.

File details

Details for the file a_pandas_ex_group_coordinates_by_distance-0.10-py3-none-any.whl.

File metadata

File hashes

Hashes for a_pandas_ex_group_coordinates_by_distance-0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 88f8a066a87b3217b66a5b3b745c16ea0a2eac009264a2ccfb7241bc8df555e3
MD5 7691e7849ee0663c36c2aed4d8bf159a
BLAKE2b-256 ed77bcefc65b940ebc9c1929c11cbcf544c6221ec9a072674eb7b854026865f7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page