Skip to main content

Computes the intersection/symmetric difference of n DataFrames/Series

Project description

Computes the intersection/symmetric difference of n DataFrames/Series

Installation

pip install a-pandas-ex-intersection-difference

Usage

from  a_pandas_ex_intersection_difference import pd_add_set

pd_add_set()

import pandas as pd
THE CODE ABOVE WILL ADD SOME METHODS TO! YOU CAN USE PANDAS LIKE YOU DID BEFORE, BUT YOU WILL HAVE A COUPLE OF METHODS MORE:
  • pandas.DataFrame.ds_set_intersections / pandas.Series.ds_set_intersections

  • pandas.DataFrame.ds_set_symmetric_difference / pandas.Series.ds_set_symmetric_difference

  • pandas.DataFrame.ds_set_union / pandas.Series.ds_set_union

  • pandas.DataFrame.ds_value_counts_to_column / pandas.Series.ds_value_counts_to_column

pandas.DataFrame.ds_set_intersections / pandas.Series.ds_set_intersections
    #Computes the intersection of n DataFrames/Series



    #Example

    df = pd.read_csv("https://raw.githubusercontent.com/pandas-dev/pandas/main/doc/data/titanic.csv")



    #Let's create some DataFrames with random data from df



    df1 = df.sample(len(df) - len(df)//2).copy()

    df2 = df.sample(len(df) - len(df)//2).copy()

    df3 = df.sample(len(df) - len(df)//2).copy()

    df4 = df.sample(len(df) - len(df)//2).copy()

    df5 = df.sample(len(df) - len(df)//2).copy()



    

    df1.ds_set_intersections(df2) #Comparing 2 DataFrames

    Out[14]:

         Parch  PassengerId      Fare  Survived  ...  SibSp Embarked     Sex Cabin

    0        1          802   26.2500         1  ...      1        S  female   NaN

    1        0          506  108.9000         0  ...      1        C    male   C65

    2        0          386   73.5000         0  ...      0        S    male   NaN

    3        0          621   14.4542         0  ...      1        C    male   NaN

    4        1          273   19.5000         1  ...      0        S  female   NaN

    ..     ...          ...       ...       ...  ...    ...      ...     ...   ...

    439      0          240   12.2750         0  ...      0        S    male   NaN

    440      0          235   10.5000         0  ...      0        S    male   NaN

    441      1          269  153.4625         1  ...      0        S  female  C125

    442      0          394  113.2750         1  ...      1        C  female   D36

    443      0          400   12.6500         1  ...      0        S  female   NaN

    [444 rows x 12 columns]     

    

    

    df1.ds_set_intersections(df2,df3)  #Comparing 3 DataFrames   

    Out[15]:

         Parch  PassengerId      Fare  Survived  ...  SibSp Embarked     Sex Cabin

    0        0          506  108.9000         0  ...      1        C    male   C65

    1        1          480   12.2875         1  ...      0        S  female   NaN

    2        1          581   30.0000         1  ...      1        S  female   NaN

    3        1          447   19.5000         1  ...      0        S  female   NaN

    4        0           16   16.0000         1  ...      0        S  female   NaN

    ..     ...          ...       ...       ...  ...    ...      ...     ...   ...

    340      2          154   14.5000         0  ...      0        S    male   NaN

    341      0          668    7.7750         0  ...      0        S    male   NaN

    342      0          702   26.2875         1  ...      0        S    male   E24

    343      0          610  153.4625         1  ...      0        S  female  C125

    344      0          450   30.5000         1  ...      0        S    male  C104

    [345 rows x 12 columns]    

    

    

    df1.ds_set_intersections(df2,df3, df4)  #Comparing 4 DataFrames 

    Out[16]:

         Parch  PassengerId      Fare  Survived  ...  SibSp Embarked     Sex Cabin

    0        0          506  108.9000         0  ...      1        C    male   C65

    1        1          581   30.0000         1  ...      1        S  female   NaN

    2        0          283    9.5000         0  ...      0        S    male   NaN

    3        0          488   29.7000         0  ...      0        C    male   B37

    4        0          610  153.4625         1  ...      0        S  female  C125

    ..     ...          ...       ...       ...  ...    ...      ...     ...   ...

    227      0           23    8.0292         1  ...      0        Q  female   NaN

    228      1          619   39.0000         1  ...      2        S  female    F4

    229      2          473   27.7500         1  ...      1        S  female   NaN

    230      0          253   26.5500         0  ...      0        S    male   C87

    231      0          618   16.1000         0  ...      1        S  female   NaN

    [232 rows x 12 columns]   

    

    

    df1.ds_set_intersections(df2,df3, df4, df5)  #Comparing 5 DataFrames

    Out[17]:

         Parch  PassengerId      Fare  Survived  ...  SibSp Embarked     Sex Cabin

    0        0          506  108.9000         0  ...      1        C    male   C65

    1        1          581   30.0000         1  ...      1        S  female   NaN

    2        1           17   29.1250         0  ...      4        Q    male   NaN

    3        2           59   27.7500         1  ...      1        S  female   NaN

    4        0          463   38.5000         0  ...      0        S    male   E63

    ..     ...          ...       ...       ...  ...    ...      ...     ...   ...

    140      2          166   20.5250         1  ...      0        S    male   NaN

    141      0          705    7.8542         0  ...      1        S    male   NaN

    142      1           51   39.6875         0  ...      4        S    male   NaN

    143      0          833    7.2292         0  ...      0        C    male   NaN

    144      2          154   14.5000         0  ...      0        S    male   NaN

    [145 rows x 12 columns]
pandas.DataFrame.ds_set_symmetric_difference / pandas.Series.ds_set_symmetric_difference
    #Computes the symmetric difference of n DataFrames/Series



    #Example

    df = pd.read_csv("https://raw.githubusercontent.com/pandas-dev/pandas/main/doc/data/titanic.csv")



    #Let's create some DataFrames with random data from df



    df1 = df.sample(len(df) - len(df)//2).copy()

    df2 = df.sample(len(df) - len(df)//2).copy()

    df3 = df.sample(len(df) - len(df)//2).copy()

    df4 = df.sample(len(df) - len(df)//2).copy()

    df5 = df.sample(len(df) - len(df)//2).copy()



    df1.ds_set_symmetric_difference(df2) #Comparing 2 DataFrames

    Out[18]:

         Parch  PassengerId      Fare  ...  Embarked     Sex        Cabin

    0        0          567    7.8958  ...         S    male          NaN

    1        0           46    8.0500  ...         S    male          NaN

    2        2          342  263.0000  ...         S  female  C23 C25 C27

    3        0          845    8.6625  ...         S    male          NaN

    4        0            1    7.2500  ...         S    male          NaN

    ..     ...          ...       ...  ...       ...     ...          ...

    219      0          865   13.0000  ...         S    male          NaN

    220      5          639   39.6875  ...         S  female          NaN

    221      0           30    7.8958  ...         S    male          NaN

    222      0          332   28.5000  ...         S    male         C124

    223      0          884   10.5000  ...         S    male          NaN

    [448 rows x 12 columns]

    

    

    df1.ds_set_symmetric_difference(df2,df3)  #Comparing 3 DataFrames

    Out[19]:

         Parch  PassengerId     Fare  Survived  ...  SibSp Embarked     Sex Cabin

    0        0          567   7.8958         0  ...      0        S    male   NaN

    1        0           46   8.0500         0  ...      0        S    male   NaN

    2        0          845   8.6625         0  ...      0        S    male   NaN

    3        0          142   7.7500         1  ...      0        S  female   NaN

    4        0          579  14.4583         0  ...      1        C  female   NaN

    ..     ...          ...      ...       ...  ...    ...      ...     ...   ...

    106      0          430   8.0500         1  ...      0        S    male   E10

    107      1          363  14.4542         0  ...      0        C  female   NaN

    108      1          531  26.0000         1  ...      1        S  female   NaN

    109      0          748  13.0000         1  ...      0        S  female   NaN

    110      0          876   7.2250         1  ...      0        C  female   NaN

    [339 rows x 12 columns]

    

    

    df1.ds_set_symmetric_difference(df2,df3,df4)  #Comparing 4 DataFrames

    Out[20]:

        Parch  PassengerId      Fare  Survived  ...  SibSp Embarked     Sex Cabin

    0       0          567    7.8958         0  ...      0        S    male   NaN

    1       0           46    8.0500         0  ...      0        S    male   NaN

    2       0          142    7.7500         1  ...      0        S  female   NaN

    3       0          579   14.4583         0  ...      1        C  female   NaN

    4       0          365   15.5000         0  ...      1        Q    male   NaN

    ..    ...          ...       ...       ...  ...    ...      ...     ...   ...

    39      2          551  110.8833         1  ...      0        C    male   C70

    40      0           19   18.0000         0  ...      1        S  female   NaN

    41      0          615    8.0500         0  ...      0        S    male   NaN

    42      0          204    7.2250         0  ...      0        C    male   NaN

    43      1          375   21.0750         0  ...      3        S  female   NaN

    [204 rows x 12 columns]

    df1.ds_set_symmetric_difference(df2,df3,df4,df5)  #Comparing 5 DataFrames

    Out[21]:

        Parch  PassengerId     Fare  Survived  ...  SibSp Embarked     Sex Cabin

    0       0          567   7.8958         0  ...      0        S    male   NaN

    1       0          579  14.4583         0  ...      1        C  female   NaN

    2       0          365  15.5000         0  ...      1        Q    male   NaN

    3       0          644  56.4958         1  ...      0        S    male   NaN

    4       0          708  26.2875         1  ...      0        S    male   E24

    ..    ...          ...      ...       ...  ...    ...      ...     ...   ...

    25      0          343  13.0000         0  ...      0        S    male   NaN

    26      0          656  73.5000         0  ...      2        S    male   NaN

    27      0          407   7.7500         0  ...      0        S    male   NaN

    28      0          301   7.7500         1  ...      0        Q  female   NaN

    29      0          819   6.4500         0  ...      0        S    male   NaN

    [125 rows x 12 columns]



    

    

        Parameters

            args: Union[pd.Series, pd.DataFrame]

                DataFrames or Series, how many you want

            accept_df_with_different_columns: bool=True

                Let's say you have one DataFrame whose columns are:  [Parch,  PassengerId, Fare, Survived, SibSp,Embarked,  Sex, Cabin]

                If you want to compare it to: [Flight, Fare, Survived, SibSp,Embarked,  Sex, Cabin]

                It won't work, unless you pass accept_df_with_different_columns=True

                Only the columns that are in all dataframes will be compared



        Returns

            pd.DataFrame
pandas.DataFrame.ds_set_union / pandas.Series.ds_set_union
    df = pd.read_csv("https://raw.githubusercontent.com/pandas-dev/pandas/main/doc/data/titanic.csv")



    #Let's create some DataFrames with random data from df



    df1 = df.sample(len(df) - len(df)//2).copy()

    df2 = df.sample(len(df) - len(df)//2).copy()

    df3 = df.sample(len(df) - len(df)//2).copy()

    df4 = df.sample(len(df) - len(df)//2).copy()

    df5 = df.sample(len(df) - len(df)//2).copy()





    df1[['PassengerId','Survived','Name']].ds_set_union(df2[['Pclass','Cabin','Name']])

    Out[17]:

                                                      Name

    0                                Carbines, Mr. William

    1                            Sundman, Mr. Johan Julian

    2                                     Dimic, Mr. Jovan

    3                          Harder, Mr. George Achilles

    4                                 Rice, Master. Eugene

    ..                                                 ...

    887                       Carlsson, Mr. August Sigfrid

    888                       Hoyt, Mr. Frederick Maxfield

    889                      Somerton, Mr. Francis William

    890                     Francatelli, Miss. Laura Mabel

    891  Thayer, Mrs. John Borland (Marian Longstreth M...





    #If, for whatever reason, you don't want to use pd.concat(), you can use this method.

    #Don't use this method if you can use pd.concat



        Parameters

            args: Union[pd.Series, pd.DataFrame]

                DataFrames or Series, how many you want

            accept_df_with_different_columns: bool=True

                Let's say you have one DataFrame whose columns are:  [Parch,  PassengerId, Fare, Survived, SibSp,Embarked,  Sex, Cabin]

                If you want to compare it to: [Flight, Fare, Survived, SibSp,Embarked,  Sex, Cabin]

                It won't work, unless you pass accept_df_with_different_columns=True

                Only the columns that are in all dataframes will be compared



        Returns

            pd.DataFrame
pandas.DataFrame.ds_value_counts_to_column / pandas.Series.ds_value_counts_to_column
    df = pd.read_csv("https://raw.githubusercontent.com/pandas-dev/pandas/main/doc/data/titanic.csv")



    df2.Sex.ds_value_counts_to_column()

         PassengerId  Survived  Pclass  ...      Fare Cabin  Embarked

    504          505         1       1  ...   86.5000   B79         S

    781          782         1       1  ...   57.0000   B20         S

    855          856         1       3  ...    9.3500   NaN         S

    552          553         0       3  ...    7.8292   NaN         Q

    777          778         1       3  ...   12.4750   NaN         S

    ..           ...       ...     ...  ...       ...   ...       ...

    756          757         0       3  ...    7.7958   NaN         S

    224          225         1       1  ...   90.0000   C93         S

    488          489         0       3  ...    8.0500   NaN         S

    309          310         1       1  ...   56.9292   E36         C

    581          582         1       1  ...  110.8833   C68         C

    [446 rows x 12 columns]



    df2.Sex.ds_value_counts_to_column()

    Out[22]:

    0      152

    1      152

    2      152

    3      294

    4      152

          ...

    441    294

    442    294

    443    294

    444    152

    445    152

    Name: 0, Length: 446, dtype: int64



    This method could also be useful, when you are comparing DataFrames, since it counts the different values in a Series

    and returns a DataFrame that you can merge with your original DataFrame

        Parameters

            df: pd.Series

        Returns

            pd.DataFrame

Project details


Release history Release notifications | RSS feed

This version

0.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file a_pandas_ex_intersection_difference-0.1.tar.gz.

File metadata

File hashes

Hashes for a_pandas_ex_intersection_difference-0.1.tar.gz
Algorithm Hash digest
SHA256 e54e69d05b335b302c50965a1f0d4d67150b9f64b55fa82850676131a6ca1cc1
MD5 8d8ae2bb1ec1fac13a2499555a17cb75
BLAKE2b-256 ee68b5c43aca4d2720ef3912e1f40f4c26242ee27af74bfc77f6da2277310c4f

See more details on using hashes here.

File details

Details for the file a_pandas_ex_intersection_difference-0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for a_pandas_ex_intersection_difference-0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 44191fbf8a9d466a2a42334666fa44d9fd82ca2e749b4860eacb882b2ca0bf2d
MD5 28cf362525eac0b86daee25497929f0c
BLAKE2b-256 3eacab93b0c5bf05f381ab650ad0ab113a8c3f49c4864f282f294fc3b5079c8f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page