Skip to main content

Splits a DataFrame/Series logarithmically

Project description

Splits a DataFrame/Series logarithmically

pip install a-pandas-ex-logsplit
from a_pandas_ex_logsplit import pd_add_logsplit

pd_add_logsplit()

import pandas as pd

df = pd.read_csv("https://github.com/pandas-dev/pandas/raw/main/doc/data/titanic.csv")

df = df[:50]

for h in df.ds_logsplit(columns=["Cabin", "Fare"], includeindex=False):

    print(h)

for h in df.ds_logsplit(columns="Cabin", includeindex=True):

    print(h)

for h in df.ds_logsplit(columns="Cabin", includeindex=False):

    print(h)

for h in df.Cabin.ds_logsplit(includeindex=True):

    print(h)

	

	

[(nan, 7.25)]

[('C85', 71.2833), (nan, 7.925)]

[('C123', 53.1), (nan, 8.05), (nan, 8.4583)]

[('E46', 51.8625), (nan, 21.075), (nan, 11.1333), (nan, 30.0708)]

[('G6', 16.7), ('C103', 26.55), (nan, 8.05), (nan, 31.275), (nan, 7.8542)]

[(nan, 16.0), (nan, 29.125), (nan, 13.0), (nan, 18.0), (nan, 7.225), (nan, 26.0)]

[('D56', 13.0), (nan, 8.0292), ('A6', 35.5), (nan, 21.075), (nan, 31.3875), (nan, 7.225), ('C23 C25 C27', 263.0)]

[(nan, 7.8792), (nan, 7.8958), (nan, 27.7208), ('B78', 146.5208), (nan, 7.75), (nan, 10.5), (nan, 82.1708), (nan, 52.0)]

[(nan, 7.2292), (nan, 8.05), (nan, 18.0), (nan, 11.2417), (nan, 9.475), (nan, 21.0), (nan, 7.8958), (nan, 41.5792), (nan, 7.8792)]

[(nan, 8.05), (nan, 15.5), (nan, 7.75), (nan, 21.6792), (nan, 17.8)]





[(0, 1)]

[(1, 2), (2, 3)]

[(3, 4), (4, 5), (5, 6)]

[(6, 7), (7, 8), (8, 9), (9, 10)]

[(10, 11), (11, 12), (12, 13), (13, 14), (14, 15)]

[(15, 16), (16, 17), (17, 18), (18, 19), (19, 20), (20, 21)]

[(21, 22), (22, 23), (23, 24), (24, 25), (25, 26), (26, 27), (27, 28)]

[(28, 29), (29, 30), (30, 31), (31, 32), (32, 33), (33, 34), (34, 35), (35, 36)]

[(36, 37), (37, 38), (38, 39), (39, 40), (40, 41), (41, 42), (42, 43), (43, 44), (44, 45)]

[(45, 46), (46, 47), (47, 48), (48, 49), (49, 50)]





[nan]

['C85', nan]

['C123', nan, nan]

['E46', nan, nan, nan]

['G6', 'C103', nan, nan, nan]

[nan, nan, nan, nan, nan, nan]

['D56', nan, 'A6', nan, nan, nan, 'C23 C25 C27']

[nan, nan, nan, 'B78', nan, nan, nan, nan]

[nan, nan, nan, nan, nan, nan, nan, nan, nan]

[nan, nan, nan, nan, nan]





[(0, nan)]

[(1, 'C85'), (2, nan)]

[(3, 'C123'), (4, nan), (5, nan)]

[(6, 'E46'), (7, nan), (8, nan), (9, nan)]

[(10, 'G6'), (11, 'C103'), (12, nan), (13, nan), (14, nan)]

[(15, nan), (16, nan), (17, nan), (18, nan), (19, nan), (20, nan)]

[(21, 'D56'), (22, nan), (23, 'A6'), (24, nan), (25, nan), (26, nan), (27, 'C23 C25 C27')]

[(28, nan), (29, nan), (30, nan), (31, 'B78'), (32, nan), (33, nan), (34, nan), (35, nan)]

[(36, nan), (37, nan), (38, nan), (39, nan), (40, nan), (41, nan), (42, nan), (43, nan), (44, nan)]

[(45, nan), (46, nan), (47, nan), (48, nan), (49, nan)]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

a_pandas_ex_logsplit-0.10.tar.gz (4.7 kB view details)

Uploaded Source

Built Distribution

a_pandas_ex_logsplit-0.10-py3-none-any.whl (6.5 kB view details)

Uploaded Python 3

File details

Details for the file a_pandas_ex_logsplit-0.10.tar.gz.

File metadata

  • Download URL: a_pandas_ex_logsplit-0.10.tar.gz
  • Upload date:
  • Size: 4.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for a_pandas_ex_logsplit-0.10.tar.gz
Algorithm Hash digest
SHA256 adb1bab69923a519d13f857fdab6af84b9db2a6ced0293363352e7fb707287f6
MD5 94bdf447f9347aa5df04fdca50ce9050
BLAKE2b-256 a565d2d5e42fc50d0a25af4bf3db4973018e56ce618437138c0f8bad644a1506

See more details on using hashes here.

File details

Details for the file a_pandas_ex_logsplit-0.10-py3-none-any.whl.

File metadata

File hashes

Hashes for a_pandas_ex_logsplit-0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 f0f3189fadcfba072bd9d5e6bede5b0f89926aa32be9abb973dede2b9d946243
MD5 4e1bb62937afd37c1eec11a9a9cf727a
BLAKE2b-256 1f2770b09b07fed06b904ca82028253100ed2d7f198b5a2a90d32db613b52cad

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page