Skip to main content

Load a ProcDump memory dump into a Pandas DataFrame

Project description

ProcDump memory dump to Pandas DataFrame

# Download ProcDump: https://learn.microsoft.com/pt-br/sysinternals/downloads/procdump

# I had to make some changes to winappdbg

# If you get an Exception, download https://github.com/hansalemaos/a_pandas_ex_memorydump_to_df/blob/main/winappdbg.zip

# and overwrite all files in Lib\site-packages\winappdbg



$pip install a-pandas-ex-memorydump-to-df



import pandas as pd

from a_pandas_ex_memorydump_to_df import pd_add_memorydf

pd_add_memorydf()



df = pd.Q_df_from_memory(

    pid=9132, procdumppath=r"C:\Program Files\procdump.exe", with_utf8_bytes=False

)  # with_utf8_bytes=True takes much more time!





The method will convert all bytes to every possible format which means, the DataFrame 

might get huge. 







# Notepad.exe

#       aa_address1_hex aa_address2_hex  ...  aa_ascii_int_63  aa_ascii_int_66

# 0            00000000        00010000  ...               46               46

# 1            00000000        00010010  ...               46               46

# 2            00000000        00010020  ...               46               46

# 3            00000000        00010030  ...               46               46

# 4            00000000        00010040  ...               46               46

#                ...             ...  ...              ...              ...

# 64014        00007ff5        fffb0fc0  ...               46               46

# 64015        00007ff5        fffb0fd0  ...               46               46

# 64016        00007ff5        fffb0fe0  ...               46               46

# 64017        00007ff5        fffb0ff0  ...               46               46

# 64018        00007ff5        fffb1000  ...                0                0

# [64019 rows x 304 columns]



# df.size

# Out[16]: 19461776



# explorer.exe

# df

# Out[10]:

#         aa_address1_hex aa_address2_hex  ...  aa_ascii_int_63  aa_ascii_int_66

# 0              00000000        00010000  ...               46               46

# 1              00000000        00010010  ...               46               46

# 2              00000000        00010020  ...               46               46

# 3              00000000        00010030  ...               46               46

# 4              00000000        00010040  ...               46               46

#                  ...             ...  ...              ...              ...

# 3234712        00007ff5        fffb0fc0  ...               46               46

# 3234713        00007ff5        fffb0fd0  ...               46               46

# 3234714        00007ff5        fffb0fe0  ...               46               46

# 3234715        00007ff5        fffb0ff0  ...               46               46

# 3234716        00007ff5        fffb1000  ...                0                0

#

# [3234717 rows x 304 columns]

#

# df.size

# Out[11]: 983353968



# Location of the temp file (procdump)

# df.tmp_file_path

# Out[14]: 'C:\\Users\\Gamer\\AppData\\Local\\Temp\\tmpsypcc1g5.dmp'

# df.tmp_delete_file()  $ file must be closed before

Let's compare the converted values with the ones from CheatEngine

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

a_pandas_ex_memorydump_to_df-0.11.tar.gz (9.1 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file a_pandas_ex_memorydump_to_df-0.11.tar.gz.

File metadata

File hashes

Hashes for a_pandas_ex_memorydump_to_df-0.11.tar.gz
Algorithm Hash digest
SHA256 e45c9b3d17a2088b67f1cbff1b7579a662b5bd67bd7c7b6036a1c37074b68d23
MD5 62761942c9d7ecd72811ecd445266157
BLAKE2b-256 6ae56327980bff9a2218eda4db7b29065eb1ddc189d9b74b19950617d2119e36

See more details on using hashes here.

File details

Details for the file a_pandas_ex_memorydump_to_df-0.11-py3-none-any.whl.

File metadata

File hashes

Hashes for a_pandas_ex_memorydump_to_df-0.11-py3-none-any.whl
Algorithm Hash digest
SHA256 a885450697e4fce25c2a16b381835d37b1a154edc88b877ca25958c653f63b8a
MD5 b35e729c855f99cc2a115714107b70b6
BLAKE2b-256 8073e36daeccc68247b32e0176b8f5d7c4e0f02c8ca03331bea63efd6a6d3c5e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page