Skip to main content

Convert any SQL Database to a Pandas DataFrame

Project description

Convert any SQL Database to a Pandas DataFrame

$ pip install a-pandas-ex-read-sql
from a_pandas_ex_read_sql import pd_add_read_sql_file
pd_add_read_sql_file()
import pandas as pd
dict_with_dfs = pd.Q_read_sql(r"F:\msgstorexxxxxxxxxxxxxxxxx.db")

Update 13.5:

# Added .SQL File Reading Functionality
# To read an .SQL file and obtain the data, you can use the pd.Q_read_sql() function.
# This code reads the specified SQL file (.sql - only INSERT commands) and returns a DataFrame containing the data from the file.
df = pd.Q_read_sql(r"C:\Users\hansc\Downloads\sax\world.sql")

# Reading an SQLite Database File (.db)
# To read an SQLite database file and retrieve the data, you can also use the pd.Q_read_sql() function.
# This code reads the specified SQLite database file (northwind.db) and returns a DataFrame containing the data in a dict of DataFrames.

df2 = pd.Q_read_sql(r"C:\Users\hansc\Downloads\northwind.db")


# To convert all tables in an SQLite database file into a single DataFrame, you can use the pd.Q_db_to_one_df() # function. This code reads the specified SQLite database file (northwind.db), retrieves all the tables, and combines them into a single DataFrame.
df3 = pd.Q_db_to_one_df(path=r"C:\Users\hansc\Downloads\northwind.db")



# Splitting a DataFrame into Grouped DataFrames (Revert the last step)
# To split a DataFrame into multiple DataFrames based on specified columns, you can use the d_split_in_groups() # function. This code splits the DataFrame (df3) into multiple DataFrames based on the "aa_table" column. The result is a dictionary where the keys are group names, and the values are the corresponding split DataFrames.

df4 = df3.d_split_in_groups(columns=["aa_table"])

# To revert the grouped DataFrames back into a single DataFrame (without reading SQL), you can use the pd.Q_groupdict_to_one_df() function. 
# This code takes the dictionary of grouped DataFrames (df4) and combines them into a single DataFrame.
df5 = pd.Q_groupdict_to_one_df(df4)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

a_pandas_ex_read_sql-0.11.tar.gz (6.4 kB view details)

Uploaded Source

Built Distribution

a_pandas_ex_read_sql-0.11-py3-none-any.whl (8.1 kB view details)

Uploaded Python 3

File details

Details for the file a_pandas_ex_read_sql-0.11.tar.gz.

File metadata

  • Download URL: a_pandas_ex_read_sql-0.11.tar.gz
  • Upload date:
  • Size: 6.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for a_pandas_ex_read_sql-0.11.tar.gz
Algorithm Hash digest
SHA256 233f2e0a7df947135cd4a1e01e0f62034cf3246ae4d646910915a31de27fa58e
MD5 17fd2a707da9132988624349bed10a77
BLAKE2b-256 20e51184505e7a714b3642e5fe0783afeef0f6f1868fe6b79e7a59e25457b636

See more details on using hashes here.

File details

Details for the file a_pandas_ex_read_sql-0.11-py3-none-any.whl.

File metadata

File hashes

Hashes for a_pandas_ex_read_sql-0.11-py3-none-any.whl
Algorithm Hash digest
SHA256 3988d4f68fa13258fecb2d0cac3834f2e6cb12838074a27a399ea698520bbeb0
MD5 04d5c3b9ecca58f130fdb7df15b802bb
BLAKE2b-256 78e23eaf709934feec31188f73bb684648f31314569e2376fd351fd62d0a83b8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page