Several methods to split a pandas DataFrame/Series
Project description
Several methods to split a pandas DataFrame/Series
pip install a-pandas-ex-split
from a_pandas_ex_split import pd_add_df_split
import pandas as pd
pd_add_df_split()
df = pd.read_csv(
"https://raw.githubusercontent.com/pandas-dev/pandas/main/doc/data/titanic.csv"
)
df = df[:50]
t1 = df.ds_iloc_split(splitindex=[10, 20, 40])
print(f"\n\n{t1=}")
t2 = df.ds_loc_split(splitindex=[10, 20, 35])
print(f"\n\n{t2=}")
t3 = df.ds_iloc_split_pairwise(splitindex=[(0, 10), (25, 30)], include_last=True)
print(f"\n\n{t3=}")
t4 = df.ds_split_in_n_parts(n=9) # len of results = [6, 6, 6, 6, 6, 5, 5, 5, 5]
print(f"\n\n{t4=}")
t5 = df.ds_split_in_n_parts_of_length(
size_of_each=8, exact_split=False
) # len of results = [9, 9, 8, 8, 8, 8]
print(f"\n\n{t5=}")
t6 = df.ds_split_in_n_parts_of_length(
size_of_each=8, exact_split=True
) # len of results = [8, 8, 8, 8, 8, 8, 2]
print(f"\n\n{t6=}")
t7 = df.PassengerId.ds_split_in_n_parts_of_length(
size_of_each=8, exact_split=True
) # len of results = [8, 8, 8, 8, 8, 8, 2]
print(f"\n\n{t7=}")
t1=[ PassengerId Survived Pclass ... Fare Cabin Embarked
0 1 0 3 ... 7.2500 NaN S
1 2 1 1 ... 71.2833 C85 C
2 3 1 3 ... 7.9250 NaN S
3 4 1 1 ... 53.1000 C123 S
4 5 0 3 ... 8.0500 NaN S
5 6 0 3 ... 8.4583 NaN Q
6 7 0 1 ... 51.8625 E46 S
7 8 0 3 ... 21.0750 NaN S
8 9 1 3 ... 11.1333 NaN S
9 10 1 2 ... 30.0708 NaN C
[10 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
10 11 1 3 ... 16.7000 G6 S
11 12 1 1 ... 26.5500 C103 S
12 13 0 3 ... 8.0500 NaN S
13 14 0 3 ... 31.2750 NaN S
14 15 0 3 ... 7.8542 NaN S
15 16 1 2 ... 16.0000 NaN S
16 17 0 3 ... 29.1250 NaN Q
17 18 1 2 ... 13.0000 NaN S
18 19 0 3 ... 18.0000 NaN S
19 20 1 3 ... 7.2250 NaN C
[10 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
20 21 0 2 ... 26.0000 NaN S
21 22 1 2 ... 13.0000 D56 S
22 23 1 3 ... 8.0292 NaN Q
23 24 1 1 ... 35.5000 A6 S
24 25 0 3 ... 21.0750 NaN S
25 26 1 3 ... 31.3875 NaN S
26 27 0 3 ... 7.2250 NaN C
27 28 0 1 ... 263.0000 C23 C25 C27 S
28 29 1 3 ... 7.8792 NaN Q
29 30 0 3 ... 7.8958 NaN S
30 31 0 1 ... 27.7208 NaN C
31 32 1 1 ... 146.5208 B78 C
32 33 1 3 ... 7.7500 NaN Q
33 34 0 2 ... 10.5000 NaN S
34 35 0 1 ... 82.1708 NaN C
35 36 0 1 ... 52.0000 NaN S
36 37 1 3 ... 7.2292 NaN C
37 38 0 3 ... 8.0500 NaN S
38 39 0 3 ... 18.0000 NaN S
39 40 1 3 ... 11.2417 NaN C
[20 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
40 41 0 3 ... 9.4750 NaN S
41 42 0 2 ... 21.0000 NaN S
42 43 0 3 ... 7.8958 NaN C
43 44 1 2 ... 41.5792 NaN C
44 45 1 3 ... 7.8792 NaN Q
45 46 0 3 ... 8.0500 NaN S
46 47 0 3 ... 15.5000 NaN Q
47 48 1 3 ... 7.7500 NaN Q
48 49 0 3 ... 21.6792 NaN C
49 50 0 3 ... 17.8000 NaN S
[10 rows x 12 columns]]
t2=[ PassengerId Survived Pclass ... Fare Cabin Embarked
0 1 0 3 ... 7.2500 NaN S
1 2 1 1 ... 71.2833 C85 C
2 3 1 3 ... 7.9250 NaN S
3 4 1 1 ... 53.1000 C123 S
4 5 0 3 ... 8.0500 NaN S
5 6 0 3 ... 8.4583 NaN Q
6 7 0 1 ... 51.8625 E46 S
7 8 0 3 ... 21.0750 NaN S
8 9 1 3 ... 11.1333 NaN S
9 10 1 2 ... 30.0708 NaN C
10 11 1 3 ... 16.7000 G6 S
[11 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
10 11 1 3 ... 16.7000 G6 S
11 12 1 1 ... 26.5500 C103 S
12 13 0 3 ... 8.0500 NaN S
13 14 0 3 ... 31.2750 NaN S
14 15 0 3 ... 7.8542 NaN S
15 16 1 2 ... 16.0000 NaN S
16 17 0 3 ... 29.1250 NaN Q
17 18 1 2 ... 13.0000 NaN S
18 19 0 3 ... 18.0000 NaN S
19 20 1 3 ... 7.2250 NaN C
20 21 0 2 ... 26.0000 NaN S
[11 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
20 21 0 2 ... 26.0000 NaN S
21 22 1 2 ... 13.0000 D56 S
22 23 1 3 ... 8.0292 NaN Q
23 24 1 1 ... 35.5000 A6 S
24 25 0 3 ... 21.0750 NaN S
25 26 1 3 ... 31.3875 NaN S
26 27 0 3 ... 7.2250 NaN C
27 28 0 1 ... 263.0000 C23 C25 C27 S
28 29 1 3 ... 7.8792 NaN Q
29 30 0 3 ... 7.8958 NaN S
30 31 0 1 ... 27.7208 NaN C
31 32 1 1 ... 146.5208 B78 C
32 33 1 3 ... 7.7500 NaN Q
33 34 0 2 ... 10.5000 NaN S
34 35 0 1 ... 82.1708 NaN C
35 36 0 1 ... 52.0000 NaN S
[16 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
35 36 0 1 ... 52.0000 NaN S
36 37 1 3 ... 7.2292 NaN C
37 38 0 3 ... 8.0500 NaN S
38 39 0 3 ... 18.0000 NaN S
39 40 1 3 ... 11.2417 NaN C
40 41 0 3 ... 9.4750 NaN S
41 42 0 2 ... 21.0000 NaN S
42 43 0 3 ... 7.8958 NaN C
43 44 1 2 ... 41.5792 NaN C
44 45 1 3 ... 7.8792 NaN Q
45 46 0 3 ... 8.0500 NaN S
46 47 0 3 ... 15.5000 NaN Q
47 48 1 3 ... 7.7500 NaN Q
48 49 0 3 ... 21.6792 NaN C
49 50 0 3 ... 17.8000 NaN S
[15 rows x 12 columns]]
t3=[ PassengerId Survived Pclass ... Fare Cabin Embarked
0 1 0 3 ... 7.2500 NaN S
1 2 1 1 ... 71.2833 C85 C
2 3 1 3 ... 7.9250 NaN S
3 4 1 1 ... 53.1000 C123 S
4 5 0 3 ... 8.0500 NaN S
5 6 0 3 ... 8.4583 NaN Q
6 7 0 1 ... 51.8625 E46 S
7 8 0 3 ... 21.0750 NaN S
8 9 1 3 ... 11.1333 NaN S
9 10 1 2 ... 30.0708 NaN C
10 11 1 3 ... 16.7000 G6 S
[11 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
25 26 1 3 ... 31.3875 NaN S
26 27 0 3 ... 7.2250 NaN C
27 28 0 1 ... 263.0000 C23 C25 C27 S
28 29 1 3 ... 7.8792 NaN Q
29 30 0 3 ... 7.8958 NaN S
30 31 0 1 ... 27.7208 NaN C
[6 rows x 12 columns]]
t4=[ PassengerId Survived Pclass ... Fare Cabin Embarked
0 1 0 3 ... 7.2500 NaN S
1 2 1 1 ... 71.2833 C85 C
2 3 1 3 ... 7.9250 NaN S
3 4 1 1 ... 53.1000 C123 S
4 5 0 3 ... 8.0500 NaN S
5 6 0 3 ... 8.4583 NaN Q
[6 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
6 7 0 1 ... 51.8625 E46 S
7 8 0 3 ... 21.0750 NaN S
8 9 1 3 ... 11.1333 NaN S
9 10 1 2 ... 30.0708 NaN C
10 11 1 3 ... 16.7000 G6 S
11 12 1 1 ... 26.5500 C103 S
[6 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
12 13 0 3 ... 8.0500 NaN S
13 14 0 3 ... 31.2750 NaN S
14 15 0 3 ... 7.8542 NaN S
15 16 1 2 ... 16.0000 NaN S
16 17 0 3 ... 29.1250 NaN Q
17 18 1 2 ... 13.0000 NaN S
[6 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
18 19 0 3 ... 18.0000 NaN S
19 20 1 3 ... 7.2250 NaN C
20 21 0 2 ... 26.0000 NaN S
21 22 1 2 ... 13.0000 D56 S
22 23 1 3 ... 8.0292 NaN Q
23 24 1 1 ... 35.5000 A6 S
[6 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
24 25 0 3 ... 21.0750 NaN S
25 26 1 3 ... 31.3875 NaN S
26 27 0 3 ... 7.2250 NaN C
27 28 0 1 ... 263.0000 C23 C25 C27 S
28 29 1 3 ... 7.8792 NaN Q
29 30 0 3 ... 7.8958 NaN S
[6 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
30 31 0 1 ... 27.7208 NaN C
31 32 1 1 ... 146.5208 B78 C
32 33 1 3 ... 7.7500 NaN Q
33 34 0 2 ... 10.5000 NaN S
34 35 0 1 ... 82.1708 NaN C
[5 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
35 36 0 1 ... 52.0000 NaN S
36 37 1 3 ... 7.2292 NaN C
37 38 0 3 ... 8.0500 NaN S
38 39 0 3 ... 18.0000 NaN S
39 40 1 3 ... 11.2417 NaN C
[5 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
40 41 0 3 ... 9.4750 NaN S
41 42 0 2 ... 21.0000 NaN S
42 43 0 3 ... 7.8958 NaN C
43 44 1 2 ... 41.5792 NaN C
44 45 1 3 ... 7.8792 NaN Q
[5 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
45 46 0 3 ... 8.0500 NaN S
46 47 0 3 ... 15.5000 NaN Q
47 48 1 3 ... 7.7500 NaN Q
48 49 0 3 ... 21.6792 NaN C
49 50 0 3 ... 17.8000 NaN S
[5 rows x 12 columns]]
t5=[ PassengerId Survived Pclass ... Fare Cabin Embarked
0 1 0 3 ... 7.2500 NaN S
1 2 1 1 ... 71.2833 C85 C
2 3 1 3 ... 7.9250 NaN S
3 4 1 1 ... 53.1000 C123 S
4 5 0 3 ... 8.0500 NaN S
5 6 0 3 ... 8.4583 NaN Q
6 7 0 1 ... 51.8625 E46 S
7 8 0 3 ... 21.0750 NaN S
8 9 1 3 ... 11.1333 NaN S
[9 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
9 10 1 2 ... 30.0708 NaN C
10 11 1 3 ... 16.7000 G6 S
11 12 1 1 ... 26.5500 C103 S
12 13 0 3 ... 8.0500 NaN S
13 14 0 3 ... 31.2750 NaN S
14 15 0 3 ... 7.8542 NaN S
15 16 1 2 ... 16.0000 NaN S
16 17 0 3 ... 29.1250 NaN Q
17 18 1 2 ... 13.0000 NaN S
[9 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
18 19 0 3 ... 18.0000 NaN S
19 20 1 3 ... 7.2250 NaN C
20 21 0 2 ... 26.0000 NaN S
21 22 1 2 ... 13.0000 D56 S
22 23 1 3 ... 8.0292 NaN Q
23 24 1 1 ... 35.5000 A6 S
24 25 0 3 ... 21.0750 NaN S
25 26 1 3 ... 31.3875 NaN S
[8 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
26 27 0 3 ... 7.2250 NaN C
27 28 0 1 ... 263.0000 C23 C25 C27 S
28 29 1 3 ... 7.8792 NaN Q
29 30 0 3 ... 7.8958 NaN S
30 31 0 1 ... 27.7208 NaN C
31 32 1 1 ... 146.5208 B78 C
32 33 1 3 ... 7.7500 NaN Q
33 34 0 2 ... 10.5000 NaN S
[8 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
34 35 0 1 ... 82.1708 NaN C
35 36 0 1 ... 52.0000 NaN S
36 37 1 3 ... 7.2292 NaN C
37 38 0 3 ... 8.0500 NaN S
38 39 0 3 ... 18.0000 NaN S
39 40 1 3 ... 11.2417 NaN C
40 41 0 3 ... 9.4750 NaN S
41 42 0 2 ... 21.0000 NaN S
[8 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
42 43 0 3 ... 7.8958 NaN C
43 44 1 2 ... 41.5792 NaN C
44 45 1 3 ... 7.8792 NaN Q
45 46 0 3 ... 8.0500 NaN S
46 47 0 3 ... 15.5000 NaN Q
47 48 1 3 ... 7.7500 NaN Q
48 49 0 3 ... 21.6792 NaN C
49 50 0 3 ... 17.8000 NaN S
[8 rows x 12 columns]]
t6=[ PassengerId Survived Pclass ... Fare Cabin Embarked
0 1 0 3 ... 7.2500 NaN S
1 2 1 1 ... 71.2833 C85 C
2 3 1 3 ... 7.9250 NaN S
3 4 1 1 ... 53.1000 C123 S
4 5 0 3 ... 8.0500 NaN S
5 6 0 3 ... 8.4583 NaN Q
6 7 0 1 ... 51.8625 E46 S
7 8 0 3 ... 21.0750 NaN S
[8 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
8 9 1 3 ... 11.1333 NaN S
9 10 1 2 ... 30.0708 NaN C
10 11 1 3 ... 16.7000 G6 S
11 12 1 1 ... 26.5500 C103 S
12 13 0 3 ... 8.0500 NaN S
13 14 0 3 ... 31.2750 NaN S
14 15 0 3 ... 7.8542 NaN S
15 16 1 2 ... 16.0000 NaN S
[8 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
16 17 0 3 ... 29.1250 NaN Q
17 18 1 2 ... 13.0000 NaN S
18 19 0 3 ... 18.0000 NaN S
19 20 1 3 ... 7.2250 NaN C
20 21 0 2 ... 26.0000 NaN S
21 22 1 2 ... 13.0000 D56 S
22 23 1 3 ... 8.0292 NaN Q
23 24 1 1 ... 35.5000 A6 S
[8 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
24 25 0 3 ... 21.0750 NaN S
25 26 1 3 ... 31.3875 NaN S
26 27 0 3 ... 7.2250 NaN C
27 28 0 1 ... 263.0000 C23 C25 C27 S
28 29 1 3 ... 7.8792 NaN Q
29 30 0 3 ... 7.8958 NaN S
30 31 0 1 ... 27.7208 NaN C
31 32 1 1 ... 146.5208 B78 C
[8 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
32 33 1 3 ... 7.7500 NaN Q
33 34 0 2 ... 10.5000 NaN S
34 35 0 1 ... 82.1708 NaN C
35 36 0 1 ... 52.0000 NaN S
36 37 1 3 ... 7.2292 NaN C
37 38 0 3 ... 8.0500 NaN S
38 39 0 3 ... 18.0000 NaN S
39 40 1 3 ... 11.2417 NaN C
[8 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
40 41 0 3 ... 9.4750 NaN S
41 42 0 2 ... 21.0000 NaN S
42 43 0 3 ... 7.8958 NaN C
43 44 1 2 ... 41.5792 NaN C
44 45 1 3 ... 7.8792 NaN Q
45 46 0 3 ... 8.0500 NaN S
46 47 0 3 ... 15.5000 NaN Q
47 48 1 3 ... 7.7500 NaN Q
[8 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
48 49 0 3 ... 21.6792 NaN C
49 50 0 3 ... 17.8000 NaN S
[2 rows x 12 columns]]
t7=[0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8
Name: PassengerId, dtype: int64, 8 9
9 10
10 11
11 12
12 13
13 14
14 15
15 16
Name: PassengerId, dtype: int64, 16 17
17 18
18 19
19 20
20 21
21 22
22 23
23 24
Name: PassengerId, dtype: int64, 24 25
25 26
26 27
27 28
28 29
29 30
30 31
31 32
Name: PassengerId, dtype: int64, 32 33
33 34
34 35
35 36
36 37
37 38
38 39
39 40
Name: PassengerId, dtype: int64, 40 41
41 42
42 43
43 44
44 45
45 46
46 47
47 48
Name: PassengerId, dtype: int64, 48 49
49 50
Name: PassengerId, dtype: int64]
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file a_pandas_ex_split-0.10.tar.gz
.
File metadata
- Download URL: a_pandas_ex_split-0.10.tar.gz
- Upload date:
- Size: 9.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0133140d1a3f31ec74e464d3b84836421de0bfee1c67bed87c9c9baba159d10b |
|
MD5 | 6a3bf5a4f13aa862962f060bb8e025dd |
|
BLAKE2b-256 | b4a417654742fe0cc7394d354aff965677568bbea7d0b46e364783fabbac5586 |
Provenance
File details
Details for the file a_pandas_ex_split-0.10-py3-none-any.whl
.
File metadata
- Download URL: a_pandas_ex_split-0.10-py3-none-any.whl
- Upload date:
- Size: 8.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d7cb07f9d5a0ebb3c4318916327dcba448b6e8eff6d93f372aa9c663332abed9 |
|
MD5 | b5b9a970d67d255a1b7b749cc7b90102 |
|
BLAKE2b-256 | 795c4f780f0a295fc2d80568f33e78f6ed5522038d22570fc516b1d33f375e2d |