Skip to main content

Vertical to horizontal (Series to DataFrame with multiple columns)

Project description

Vertical to horizontal (Series to DataFrame with multiple columns)

pip install a-pandas-ex-vertical-to-horizontal

from a_pandas_ex_vertical_to_horizontal import pd_add_vertical_to_horizontal

pd_add_vertical_to_horizontal()



df = pd.concat(

    [pd.Series(range(0, 20)), pd.Series(range(1000, 1020))], axis=0

).reset_index(drop=True)





df1 = df.s_vertical_to_horizontal(number_of_cells_to_join=3, drop_redundant=False, negative=False)

df2 = df.s_vertical_to_horizontal(number_of_cells_to_join=6, drop_redundant=True, negative=True)









print(df.to_string())

0        0

1        1

2        2

3        3

4        4

5        5

6        6

7        7

8        8

9        9

10      10

11      11

12      12

13      13

14      14

15      15

16      16

17      17

18      18

19      19

20    1000

21    1001

22    1002

23    1003

24    1004

25    1005

26    1006

27    1007

28    1008

29    1009

30    1010

31    1011

32    1012

33    1013

34    1014

35    1015

36    1016

37    1017

38    1018

39    1019





print(df1.to_string())

    col_0  col_1  col_2

0       0   1019   1018

1       1      0   1019

2       2      1      0

3       3      2      1

4       4      3      2

5       5      4      3

6       6      5      4

7       7      6      5

8       8      7      6

9       9      8      7

10     10      9      8

11     11     10      9

12     12     11     10

13     13     12     11

14     14     13     12

15     15     14     13

16     16     15     14

17     17     16     15

18     18     17     16

19     19     18     17

20   1000     19     18

21   1001   1000     19

22   1002   1001   1000

23   1003   1002   1001

24   1004   1003   1002

25   1005   1004   1003

26   1006   1005   1004

27   1007   1006   1005

28   1008   1007   1006

29   1009   1008   1007

30   1010   1009   1008

31   1011   1010   1009

32   1012   1011   1010

33   1013   1012   1011

34   1014   1013   1012

35   1015   1014   1013

36   1016   1015   1014

37   1017   1016   1015

38   1018   1017   1016

39   1019   1018   1017





print(df2.to_string())

    col_0  col_1  col_2  col_3  col_4  col_5

0       0      1      2      3      4      5

6       6      7      8      9     10     11

12     12     13     14     15     16     17

18     18     19   1000   1001   1002   1003

24   1004   1005   1006   1007   1008   1009

30   1010   1011   1012   1013   1014   1015

36   1016   1017   1018   1019      0      1

Project details


Release history Release notifications | RSS feed

This version

0.10

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file a_pandas_ex_vertical_to_horizontal-0.10.tar.gz.

File metadata

File hashes

Hashes for a_pandas_ex_vertical_to_horizontal-0.10.tar.gz
Algorithm Hash digest
SHA256 1890d9e33a607f36a0fe2625f26eb24e5f97f4606d5a634bdd38b45a1e1975cf
MD5 9bead69896f1d247cc8f3440043a413d
BLAKE2b-256 80dcf8b4a41ff7aba4afb5107200b69dd2d062bb4629d0e279b3a9c97dbda082

See more details on using hashes here.

File details

Details for the file a_pandas_ex_vertical_to_horizontal-0.10-py3-none-any.whl.

File metadata

File hashes

Hashes for a_pandas_ex_vertical_to_horizontal-0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 ceac5eb9d0851c42bfb4f41fe92d50c566093acbb19f3bf1ac4a539041c10c9b
MD5 330f73a165e37adffd786be5f85dbc8d
BLAKE2b-256 2f3930d68f53783609b5cb9d169d31115e8b8919c5d29a8bb402e7e9b3f204ea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page