Skip to main content

适用于A股,一款简单、纯粹的交易日历工具包。来自[西海岸量化工作室]。

Project description

a_trade_calendar

一款简单、纯粹,适用于A股的交易日历工具包。来自[西海岸量化工作室]。

安装

全新安装

pip install a-trade-calendar

升级安装

pip install --upgrade a-trade-calendar

使用

声明:日期范围从2005.1.1期 到2025-08-15 日止。 将来日期后续会保持更新,日期将到会自动提示更新。

1、获取A股最新交易日日期

import a_trade_calendar
latest_trade_dt = a_trade_calendar.get_latest_trade_date()

print(latest_trade_dt)

2、判断某个日期是否是A股交易日

import a_trade_calendar
dt = '2023-09-01'
is_trade_date = a_trade_calendar.is_trade_date(dt)

print(is_trade_date)

3、获取A股前面n个交易日对应的日期

import a_trade_calendar
dt = '2023-09-01'
trade_date = a_trade_calendar.get_pre_trade_date(dt, 3)

print(trade_date)

4、获取A股后面n个交易日对应的日期

import a_trade_calendar
dt = '2023-09-01'
trade_date = a_trade_calendar.get_next_trade_date(dt, 3)

print(trade_date)

5、获取A股两个日期相隔的交易日天数,不包括 from_dt 和 to_dt

import a_trade_calendar

from_dt = '2023-08-21'
to_dt = '2023-09-01'

trade_days = a_trade_calendar.get_trade_days_interval(from_dt, to_dt)

print(trade_days)

6、获取A股两个日期相隔的交易日天数,包括 from_dt 和 to_dt

import a_trade_calendar

from_dt = '2023-08-21'
to_dt = '2023-09-01'

trade_days = a_trade_calendar.get_trade_count(from_dt, to_dt)

print(trade_days)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

a_trade_calendar-2026.2.13.1-py2.py3-none-any.whl (14.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file a_trade_calendar-2026.2.13.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for a_trade_calendar-2026.2.13.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 962f48f61d179379328ce4496c3fa4d50fd781b1535948db083711a2a6c200ac
MD5 f161cc06f807f1073a7d56dbab1583f2
BLAKE2b-256 de37a956e03e1da31e53d643e8dc9d1afbc9b9dbf7005c646b09b31f3f533e97

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page