Bayesian optimization structure search
Project description
Bayesian Optimization Structure Search (BOSS) is a general-purpose Bayesian Optimization code. It is designed to facilitate machine learning in computational and experimental natural sciences.
For a more detailed description of the code and tutorials, please consult the user guide.
Installation
BOSS is distributed as a PyPI package and can be installed using pip:
python3 -m pip install aalto-boss
We recommend installing BOSS inside a virtual environment (venv, conda…). If you are not using virtual environments, we recommend performing a user-installation instead:
python3 -m pip install --user aalto-boss
Basic usage
As an easy example, consider the optimization of a bounded 1D function. BOSS can be run either directly from Python or via a CLI interface, both these approaches are illustrated briefly below. Note that BOSS always minimizes a given function.
Python iterface
To run BOSS from Python we first define our objective function, by default BOSS expects this function to take a single 2D numpy array as argument (this behaviour can be modified) and return a scalar value. Next, we import the BOMain object and feed it the function plus any number of BOSS keywords, after which the optimization can be started. Once finished, the optimziation results are returned in a BOResults object.
""" Using BOSS to solve the minimization problem
f(x) = sin(x) + 1.5*exp(-(x-4.3)**2) , 0 < x < 7
"""
import numpy as np
from boss.bo.bo_main import BOMain
from boss.pp.pp_main import PPMain
def func(X):
""" BOSS-compatible definition of the function. """
x = X[0, 0]
return np.sin(x) + 1.5*np.exp(-(x - 4.3)**2)
if __name__ == '__main__':
bo = BOMain(
func,
np.array([[0., 7.]]), # bounds
kernel='rbf',
initpts=5,
iterpts=15,
)
res = bo.run()
# print global minimum value and location from the last iteration
print(res.select('mu_glmin', -1), res.select('x_glmin', -1))
# run BOSS post-processing
# creates a folder "postprocessing" with plots and data
pp = PPMain(res, pp_models=True, pp_acq_funcs=True)
pp.run()
Command-line iterface
The CLI is provided by an executable called boss. The user must provide an input file containing a list of BOSS keywords and a separate Python script that defines a function to be optimized. By default, BOSS expects this function to take a single 2D numpy array as argument (this behaviour can be modified) and return a scalar value. Below we define such a function in a Python script, arbitrarily named user_function.py:
""" user_function.py
This script contains the function definition for the minimization problem
f(x) = sin(x) + 1.5*exp(-(x-4.3)**2) , 0 < x < 7
Note that the bounds are specified in the BOSS input file.
"""
import numpy as np
def func(X):
""" BOSS-compatible definition of the function. """
x = X[0, 0]
return np.sin(x) + 1.5*np.exp(-(x - 4.3)**2)
To minimize this function subject to the constraint 0 < x < 7, we define a BOSS input file boss.in:
# boss.in
userfn user_function.py func
bounds 0 7
yrange -1 1
kernel rbf
initpts 5
iterpts 15
The optimization (including post-processing) can now be started from the command line:
$ boss op boss.in
Credits
BOSS is under active development in the Materials Informatics Laboratory at the University of Turku and the Computational Electronic Structure Theory (CEST) group at Aalto University. Past and present members of development team include
Ville Parkkinen
Henri Paulamäki
Arttu Tolvanen
Ulpu Remes
Nuutti Sten
Emma Lehto
Tuomas Rossi
Manuel Kuchelmeister
Mikael Granit
Ransell D’souza
Armi Tiihonen
Matthias Stosiek
Joakim Löfgren (maintainer)
Milica Todorović (team lead)
If you wish to use BOSS in your research, please cite
Issues and feature requests
It is strongly encouraged to submit bug reports, questions, and feature requests via the gitlab issue tracker. The BOSS development team can be contacted by email at milica.todorovic@utu.fi
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for aalto_boss-1.9.1-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1299fd67e2d0bc7ed0bba835222b607b5aca46bcbe232ffb2d6e40d02335ab6e |
|
MD5 | dc67550db476dedf2ceb64838f6355f6 |
|
BLAKE2b-256 | d3e85ddac67efd6f732b6bce82f7938f0991eedb8c89e75773f0844b20bbb5e8 |