This project is a collection of Natural Language Processing tools for Kurdish Language.
Project description
Aamraz - Kurdish NLP collection
Overview
Aamraz which is written "ئامراز" in kurdish script means "instrument". This project is a collection of Natural Language Processing tools for Kurdish Language. Despite being spoken by millions, Kurdish remains an under-resourced language in Natural Language Processing (NLP). Recognizing the rich cultural heritage and historical significance of the Kurdish people, we—regardless of ethnicity—are committed to advancing tools and pre-trained models that empower the Kurdish language in modern research and technology. Our work aims to foster further development and provide a foundation for future research and applications in NLP.
Base Features
- Normalization
- Tokenization
- Stemming
- Word Embedding: Creates vector representations of words.
- Sentences Embedding: Creates vector representations of sentences.
Tools
Installation
pip install aamraz
PretrainedModels
some useful pre-trained Models:
Model | Version | Description | Size |
---|---|---|---|
FastText WordEmbedding | 2 | Model trained using FastText method on our own Corpus. This is bot the fasttext & skip-gram model itself (fasttext model. |
~ 2.3 GB |
FastText WordEmbedding - Lite | 1 | Model trained using FastText method on our own Corpus. This is bot the fasttext & skip-gram model itself (fasttext model. |
~ 800 MB |
Word2vec Model | 1 | Including needed .bin and .npy files. Find other vector sizes Here | ~ 92 MB |
Usage
import aamraz
# Normalization
normalizer= aamraz.Normalizer()
sample_sentence="قڵبەکەم بە کوردی قسە دەکات."
normalized_sentence=normalizer.normalize(sample_sentence)
print(normalized_sentence)
# Tokenization
tokenizer = aamraz.WordTokenizer()
sample_sentence="زوانی له دربره"
tokens = tokenizer.tokenize(sample_sentence)
print(tokens)
# Embedding by fasttext
model_path = 'kurdish_fasttext_skipgram_dim300_v1.bin'
embedding_model = aamraz.EmbeddingModel(model_path, dim=50)
sample_word="ئامراز"
sample_sentence="زوانی له دربره"
word_vector = embedding_model.word_embedding(sample_word)
sentence_vector = embedding_model.sentence_embedding(sample_sentence)
print(word_vector)
print(sentence_vector)
# Embedding by word2vec
model_path = 'kurdish_word2vec_model_dim100_v1.bin'
embedding_model = aamraz.EmbeddingModel(model_path, type='word2vec')
sample_word="ئامراز"
sample_sentence="زوانی له دربره"
word_vector = embedding_model.word_embedding(sample_word)
sentence_vector = embedding_model.sentence_embedding(sample_sentence)
print(word_vector)
print(sentence_vector)
# Stemming
stemmer=aamraz.Stemmer(method='simple')
stemmed=stemmer.stem("کتێبەکانمان")
print(stemmed)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file aamraz-0.0.9.tar.gz
.
File metadata
- Download URL: aamraz-0.0.9.tar.gz
- Upload date:
- Size: 9.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 93bfa168be9622b3a1ce98bbb40a2e419caa0812ebf1772831ec1a8ec0a3dc66 |
|
MD5 | 703392437f03d1f7a8eec208c6ce05ed |
|
BLAKE2b-256 | 6c3e8398d7897b99deec7aa826898156277c771e171eb082b4588f78e3d6ad91 |
File details
Details for the file aamraz-0.0.9-py3-none-any.whl
.
File metadata
- Download URL: aamraz-0.0.9-py3-none-any.whl
- Upload date:
- Size: 9.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ce7944a424c3b3c49c6595a6ef896266bb793255f3404cb58d30e3489e7d57ce |
|
MD5 | fa5e0b88858881994c317e4ed1a81e3d |
|
BLAKE2b-256 | f479eab6aa4dec8e48ff08cd40763512823f1f6e3bdcf2ac436cf4286015efef |