Skip to main content

This project analyzes mobile AAT data.

Project description

AAT Analysis

This package helps with analyzing mobile AAT data.

Install

pip install aat_analysis

How to use

#%run utils.ipynb # Some utility functions
#%run make_condition_templates.ipynb # Defines expected data based on resources
#%run json_to_df.ipynb # Turns raw json data into dataframes and calculates responses, rts, and force
from aat_analysis.make_condition_templates import make_condition_templates
from aat_analysis.json_to_df import json_to_df
from aat_analysis.utils import merge_data

#from aat_analysis.

Define folder paths

  • raw should include the raw data from your experiment
  • external should include the contents of the Resources folder of your experiment app
  • interim and processed can be empty
external_folder = "../data/external/"
interim_folder = "../data/interim/"
raw_data_folder = "../data/raw/"
processed_data_file = "../data/processed/data.csv"

Preprocess data

# Creates empty dataframes to define expected data for each condition
templates = make_condition_templates(external_folder)
# Preprocesses data for each participant and moves it to interim
json_to_df(raw_data_folder, external_folder, interim_folder, templates)
# Merges interim data and stores it for further analysis
data = merge_data(interim_folder, drop=['interpolated','interpolated_gyro'])
data.to_csv(processed_data_file)
100%|█████████████████████████████████████████████| 3/3 [00:27<00:00,  9.24s/it]

AAT data

The selected columns below contain all data needed to calculate approach tendencies for each session, participant, and stimulus type. The additional data in the dataframe (not shown) are answers to other questions and some additional AAT variables.

data[['participant','condition','session','trial','is_practice','stimulus_set','stimulus','correct_response','response','accuracy','rt','force']]
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
participant condition session trial is_practice stimulus_set stimulus correct_response response accuracy rt force
0 kmahu0zq condition_2 final_session 1 False None None None NA False NaN NaN
1 kmahu0zq condition_2 introduction_session_2 1 True practice_food stim_0154 push ND False NaN 8.124186
2 kmahu0zq condition_2 introduction_session_2 2 True practice_objects stim_1276 pull pull True 1206.0 12.130466
3 kmahu0zq condition_2 introduction_session_2 3 True practice_objects stim_1264 pull ND False NaN 1.651279
4 kmahu0zq condition_2 introduction_session_2 4 True practice_objects stim_1277 pull pull True 629.0 18.342323
... ... ... ... ... ... ... ... ... ... ... ... ...
6166 kmah8va6 condition_2 push_food_before_lunch_d5 132 False unhealthy_tempting stim_0025 pull pull True 346.0 9.024626
6167 kmah8va6 condition_2 push_food_before_lunch_d5 133 False unhealthy_non_tempting stim_0125 pull pull True 363.0 5.820239
6168 kmah8va6 condition_2 push_food_before_lunch_d5 134 False healthy_non_tempting stim_0226 pull pull True 492.0 8.345508
6169 kmah8va6 condition_2 push_food_before_lunch_d5 135 False healthy_tempting stim_0201 pull pull True 450.0 5.539470
6170 kmah8va6 condition_2 push_food_before_lunch_d5 136 False objects stim_1035 push pull False 308.0 6.589124

6171 rows × 12 columns

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aat_analysis-0.0.7.tar.gz (19.1 kB view details)

Uploaded Source

Built Distribution

aat_analysis-0.0.7-py3-none-any.whl (17.0 kB view details)

Uploaded Python 3

File details

Details for the file aat_analysis-0.0.7.tar.gz.

File metadata

  • Download URL: aat_analysis-0.0.7.tar.gz
  • Upload date:
  • Size: 19.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for aat_analysis-0.0.7.tar.gz
Algorithm Hash digest
SHA256 5334fc00ec3fe14b39b1e591cc38ac91e485bdde7174ebd6104ba6b81536c4ac
MD5 efc78edc2d5b944f459c9693400411f0
BLAKE2b-256 94054f8c8c8e73ea211da082cf2f55eac42acb8af8e917148c147da6db70c9f8

See more details on using hashes here.

File details

Details for the file aat_analysis-0.0.7-py3-none-any.whl.

File metadata

  • Download URL: aat_analysis-0.0.7-py3-none-any.whl
  • Upload date:
  • Size: 17.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for aat_analysis-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 b5cb15e42a92b615612d961dc9ead3ac4dbdc80744578143f998216a322bddbb
MD5 ed30d95cf2532d0ed697d383a46e8979
BLAKE2b-256 3ad9e2e838063822362e5d4eff77fec8cd17602344ac92d586cf64bbed6e34c4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page