Skip to main content

Machine learning components

Project description

Vector

from abel.linalg.vector import Vector

a, b = Vector([1, 2]), Vector([3, 4])
c, d = Vector([1, 2, 3]), Vector([4, 5, 6])

assert a.shape == b.shape == (1, 2)
assert c.shape == d.shape == (1, 3)

Addition

assert a + a == Vector([2, 4])
assert a + b == Vector([4, 6])
assert b + b == Vector([6, 8])

Subtraction

assert a - b == Vector([-2, -2])
assert b - a == Vector([2, 2])

Scaling

assert a * 5 == Vector([5, 10])
assert 5 * a == Vector([5, 10])
assert a / 2 == Vector([0.5, 1.0])

Dot (inner) product

assert a @ b == 11
assert a @ a == 5

Norm (length)

assert a.norm() - 2.236 < 0.001
assert b.norm() - 5 < 0.001

Angle

assert Vector.angle(a, a) < 0.001
assert Vector.angle(a, b) - 0.1799 < 0.001
assert Vector.angle(a, b) == Vector.angle(b, a)

Vector projection

assert Vector.proj(a, a) == a
assert Vector.proj(a, b) == Vector([1.32, 1.76])
assert Vector.proj(b, a) == Vector([2.2, 4.4])

Scalar projection

assert Vector.scalproj(a, b) - 4.919 < 0.01
assert Vector.scalproj(b, a) - 2.2 < 0.01
assert Vector.scalproj(a, a) - 2.236 < 0.01
assert Vector.scalproj(b, b) - 5 < 0.1

Cross product

assert Vector.cross(c, d) == Vector([-3, 6, -3])

Average (arithmetic mean)

assert Vector.average(Vector([2, 1]), Vector([4, 2])) == Vector([3.0, 1.5])

Collinearity

Vectors are collinear iff one is a scalar multiple of the other.

assert Vector.collinear(Vector([2, 1]), Vector([4, 2]))
assert Vector.collinear(Vector([-3, 4, 1]), Vector([-15, 20, 5]))
assert not Vector.collinear(Vector([0, 1]), Vector([1, 0]))

Linear independence

A set of vectors is linearly independent iff all vectors in it are pairwise non-collinear.

assert Vector.linindep(Vector([0, 1]), Vector([1, 0]))
assert Vector.linindep(Vector([1, 1]), Vector([2, 1]))
assert not Vector.linindep(Vector([1, 2, 3]), Vector([0, 0, 1]), Vector([0, 0, 2]))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

abel-0.0.6.tar.gz (3.1 kB view details)

Uploaded Source

Built Distribution

abel-0.0.6-py3-none-any.whl (3.8 kB view details)

Uploaded Python 3

File details

Details for the file abel-0.0.6.tar.gz.

File metadata

  • Download URL: abel-0.0.6.tar.gz
  • Upload date:
  • Size: 3.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for abel-0.0.6.tar.gz
Algorithm Hash digest
SHA256 4b1bbdd51a019a9b2f64f9cf1e57ae6929832f909154a53952635af3ca3e5e1e
MD5 49648be711bff4af67e34182389279fd
BLAKE2b-256 5ab38830991bf9ae36e17626f27d557d07622cdf628a1c2773186f79174567ed

See more details on using hashes here.

File details

Details for the file abel-0.0.6-py3-none-any.whl.

File metadata

File hashes

Hashes for abel-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 dc8aca51675c9d62674f1e75699f90f98bacefc1437af7371b85fb9b3d1d7676
MD5 8982d1abdeafe24ad3b4a8b4ea7e6216
BLAKE2b-256 f8ec4480b1b854b239a8350e726ef6759b6521e970d5335765fe86e48dc5a92d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page