ABEL Scheduler
Project description
How to decay your Learning Rate (PyTorch)
PyTorch implementation of ABEL
LRScheduler based on weight-norm. If you find this work interesting, do consider starring the repository. If you use this in your research, don't forget to cite!
Installation
WIP - not available on PyPi yet.
pip install abel-pytorch
Usage
import torch
from torch import nn, optim
from abel import ABEL
model = resnet18()
optim = optim.SGD(model.parameters(), 1e-3)
scheduler = ABEL(optim, 0.9)
for i, (images, labels) in enumerate(trainloader):
# forward pass...
optim.step()
scheduler.step()
Cite original paper:
@article{lewkowycz2021decay,
title={How to decay your learning rate},
author={Lewkowycz, Aitor},
journal={arXiv preprint arXiv:2103.12682},
year={2021}
}
Cite this work:
@misc{abel2021pytorch,
author = {Vaibhav Balloli},
title = {A PyTorch implementation of ABEL},
year = {2021},
howpublished = {\url{https://github.com/tourdeml/abel-pytorch}}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
abel-pytorch-0.0.1.tar.gz
(3.1 kB
view details)
Built Distribution
File details
Details for the file abel-pytorch-0.0.1.tar.gz
.
File metadata
- Download URL: abel-pytorch-0.0.1.tar.gz
- Upload date:
- Size: 3.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | aa8b99d0c6d4983c083150b2b5379ddf0593d80f2b7934e1995019f75b53c67b |
|
MD5 | c1b604c437219699fa153e5c04ce8fb5 |
|
BLAKE2b-256 | f130f98adc949f38fdb1e67fb5a13078c983ec17a188f800186aab3b0675014b |
File details
Details for the file abel_pytorch-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: abel_pytorch-0.0.1-py3-none-any.whl
- Upload date:
- Size: 4.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c456d8dbbd3116379c2fa3775d7dc42e7c2846d784a267e4c11e76809126de26 |
|
MD5 | db8a36c8d74f3208c3fe47da66b41bf5 |
|
BLAKE2b-256 | a022dace821001bfe52bf0d9c96ae3c8f9c826d9888992480b38d77530a9e9c9 |