Skip to main content

ABEL Scheduler

Project description

How to decay your Learning Rate (PyTorch)

PyTorch implementation of ABEL LRScheduler based on weight-norm. If you find this work interesting, do consider starring the repository. If you use this in your research, don't forget to cite!

Original paper

Docs

Installation

WIP - not available on PyPi yet.

pip install abel-pytorch

Usage

import torch
from torch import nn, optim
from abel import ABEL

model = resnet18()
optim = optim.SGD(model.parameters(), 1e-3)
scheduler = ABEL(optim, 0.9)

for i, (images, labels) in enumerate(trainloader):
  # forward pass...
  optim.step()
  scheduler.step()

Cite original paper:

@article{lewkowycz2021decay,
  title={How to decay your learning rate},
  author={Lewkowycz, Aitor},
  journal={arXiv preprint arXiv:2103.12682},
  year={2021}
}

Cite this work:

@misc{abel2021pytorch,
  author = {Vaibhav Balloli},
  title = {A PyTorch implementation of ABEL},
  year = {2021},
  howpublished = {\url{https://github.com/tourdeml/abel-pytorch}}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

abel-pytorch-0.0.1.tar.gz (3.1 kB view details)

Uploaded Source

Built Distribution

abel_pytorch-0.0.1-py3-none-any.whl (4.2 kB view details)

Uploaded Python 3

File details

Details for the file abel-pytorch-0.0.1.tar.gz.

File metadata

  • Download URL: abel-pytorch-0.0.1.tar.gz
  • Upload date:
  • Size: 3.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for abel-pytorch-0.0.1.tar.gz
Algorithm Hash digest
SHA256 aa8b99d0c6d4983c083150b2b5379ddf0593d80f2b7934e1995019f75b53c67b
MD5 c1b604c437219699fa153e5c04ce8fb5
BLAKE2b-256 f130f98adc949f38fdb1e67fb5a13078c983ec17a188f800186aab3b0675014b

See more details on using hashes here.

File details

Details for the file abel_pytorch-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: abel_pytorch-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 4.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for abel_pytorch-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 c456d8dbbd3116379c2fa3775d7dc42e7c2846d784a267e4c11e76809126de26
MD5 db8a36c8d74f3208c3fe47da66b41bf5
BLAKE2b-256 a022dace821001bfe52bf0d9c96ae3c8f9c826d9888992480b38d77530a9e9c9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page