Skip to main content

Machine learning components

Project description

Vector

from abel.linalg.vector import Vector

a, b = Vector([1, 2]), Vector([3, 4])
c, d = Vector([1, 2, 3]), Vector([4, 5, 6])

assert a.shape == b.shape == (1, 2)
assert c.shape == d.shape == (1, 3)

Addition

assert a + a == Vector([2, 4])
assert a + b == Vector([4, 6])
assert b + b == Vector([6, 8])

Subtraction

assert a - b == Vector([-2, -2])
assert b - a == Vector([2, 2])

Scaling

assert a * 5 == Vector([5, 10])
assert 5 * a == Vector([5, 10])

Dot (inner) product

assert a @ b == 11
assert a @ a == 5

Norm (length)

assert a.norm() - 2.236 < 0.001
assert b.norm() - 5 < 0.001

Angle

assert Vector.angle(a, a) < 0.001
assert Vector.angle(a, b) - 0.1799 < 0.001
assert Vector.angle(a, b) == Vector.angle(b, a)

Vector projection

assert Vector.proj(a, a) == a
assert Vector.proj(a, b) == Vector([1.32, 1.76])
assert Vector.proj(b, a) == Vector([2.2, 4.4])

Scalar projection

assert Vector.scalproj(a, b) - 4.919 < 0.01
assert Vector.scalproj(b, a) - 2.2 < 0.01
assert Vector.scalproj(a, a) - 2.236 < 0.01
assert Vector.scalproj(b, b) - 5 < 0.1

Cross product

assert Vector.cross(c, d) == Vector([-3, 6, -3])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
abel-0.0.3-py3-none-any.whl (3.2 kB) Copy SHA256 hash SHA256 Wheel py3
abel-0.0.3.tar.gz (2.4 kB) Copy SHA256 hash SHA256 Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page