put your model into **a bottle** then you get a working server and more.
Project description
abottle
trition/tensorrt/onnxruntim/pytorch python server wrapper
put your model into a bottle then you get a working server and more.
Demo
import numpy as np
from transformers import AutoTokenizer
class MiniLM:
def __init__(self):
self.tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
def predict(self, X):
encode_dict = self.tokenizer(
X, padding="max_length", max_length=128, truncation=True
)
input_ids = np.array(encode_dict["input_ids"], dtype=np.int32)
attention_mask = np.array(encode_dict["attention_mask"], dtype=np.int32)
outputs = self.model.infer(
{"input_ids": input_ids, "attention_mask": attention_mask}, ["y"]
)
return outputs['y']
#you can write config in class or provide it as a yaml file or yaml string
class Config:
class model:
name = "minilm"
version = "2"
you can write a class like this, and then starts with abottle
abottle main.MiniLM
config with shell
abottle main.MiniLM file_path=test_data.txt batch_size=100 --as tester --config """TritonModel:
triton_url: localhost
name: minilm
version: 2
"""
config with file
abottle main.MiniLM file_path=test_data.txt batch_size=100 --as tester --config <config yaml file path>
you can get a http server run at localhost:8081 with a POST url /infer, where your predict function will be called, the X is the json decode content, self.model in your class is a trition client wrapper with a function infer which takes a dictionary as input and a list of str as output
this code is shit, use it carefully.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file abottle-0.0.5.tar.gz
.
File metadata
- Download URL: abottle-0.0.5.tar.gz
- Upload date:
- Size: 5.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.8.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c3c276b8b0f3957b7a235a46db97dad87e3bb6bacd0d60aec14c977cb5af8fcf |
|
MD5 | 3331d7a3cafb2c2f23afb2f07d7bbc27 |
|
BLAKE2b-256 | 7bb5265f9c8d1483e6fec02ff6f9dcdeb660652e82e4c0a77547acf35b021ca2 |