Skip to main content

Algorithmically predict public sentiment on a topic using VADER sentiment analysis

Project description

abraham

PyPI version

Algorithmically predict public sentiment on a topic using VADER sentiment analysis.

Installation

Installation is simple; just install via pip.

$ pip3 install abraham3k

Basic Usage

You can run one command to do everything

from prophets import Isaiah

darthvader = Isaiah(news_source="google") 

scores = darthvader.sentiment(["amd", 
                               "microsoft", 
                               "tesla", 
                               "theranos"], 
                               window=2)
print(scores)

'''
{'amd': {'avg': 0.32922767,
         'desc_avg': 0.40470959,
         'info': {'news_source': 'google',
                  'splitting': False,
                  'weights': {'desc': 0.1, 'text': 0.8, 'title': 0.1}},
         'nice': 'positive',
         'text_avg': 0.31924348,
         'title_avg': 0.3336193},
 'microsoft': {'avg': 0.22709808,
               'desc_avg': 0.35126282,
               'info': {'news_source': 'google',
                        'splitting': False,
                        'weights': {'desc': 0.1, 'text': 0.8, 'title': 0.1}},
               'nice': 'positive',
               'text_avg': 0.22539444,
               'title_avg': 0.1165625},
 'tesla': {'avg': -0.20538455,
           'desc_avg': -0.22413444,
           'info': {'news_source': 'google',
                    'splitting': False,
                    'weights': {'desc': 0.1, 'text': 0.8, 'title': 0.1}},
           'nice': 'negative',
           'text_avg': -0.19356265,
           'title_avg': -0.28120986},
 'theranos': {'avg': -0.036198,
              'desc_avg': 0.03842,
              'info': {'news_source': 'google',
                       'splitting': False,
                       'weights': {'desc': 0.1, 'text': 0.8, 'title': 0.1}},
              'nice': 'neutral',
              'text_avg': -0.08745,
              'title_avg': 0.2992}}
'''

Changing News Sources

Isaiah supports two news sources: Google News and NewsAPI. Default is Google News, but you can change it to NewsAPI by passing Isaiah(news_source='newsapi', api_key='<your api key') when instantiating. I'd highly recommend using NewsAPI. It's much better than the Google News API. Setup is really simple, just head to the register page and sign up to get your API key.

Detailed Usage

Currently, there are a couple extra options you can use to tweak the output.

When instatiating the class, you can pass up to five optional keyword arguments: news_source and api_key (as explained above), splitting, and weights.

  • loud: bool - Whether or not the classifier prints out each individual average or not. Default: False.
  • splitting: bool - Recursively splits a large text into sentences and analyzes each sentence individually, rather than examining the article as a block. Default: False.
  • weights: dict - This chooses what each individual category (text, title, desc) is weighted as (must add up to 1). Default: weights={"title": 0.1, "desc": 0.1, "text": 0.8}.

When running the main function, sentiment, there is one requred argument, topics, and two optional keyword arguments: window and up_to.

  • topics: list - The list of the topics (each a str) to search for.
  • up_to: str - The latest day to search for, in format YYYY-MM-DD. Default: current date.
  • window: int - How many days back from up_to to search for. Default 2.

Updates

I've made it pretty simple (at least for me) to push updates. Once I'm in the directory, I can run $ ./build-push 1.2.0 "update install requirements" where 1.2.0 is the version and "update install requirements" is the git commit message. It will update to PyPi and to the github repository.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

abraham3k-1.2.3.tar.gz (5.8 MB view details)

Uploaded Source

Built Distribution

abraham3k-1.2.3-py3-none-any.whl (9.8 kB view details)

Uploaded Python 3

File details

Details for the file abraham3k-1.2.3.tar.gz.

File metadata

  • Download URL: abraham3k-1.2.3.tar.gz
  • Upload date:
  • Size: 5.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.2

File hashes

Hashes for abraham3k-1.2.3.tar.gz
Algorithm Hash digest
SHA256 dbc5a45259c6e4d405503e658589554f22a97986506d6f92a58fcc28be903243
MD5 593341a9cb0f648b0a8995e73b17f8b7
BLAKE2b-256 62a9dcde651c0f2531b015b5d465c0a2b67b799ef036206eca927d68b667e37f

See more details on using hashes here.

File details

Details for the file abraham3k-1.2.3-py3-none-any.whl.

File metadata

  • Download URL: abraham3k-1.2.3-py3-none-any.whl
  • Upload date:
  • Size: 9.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.2

File hashes

Hashes for abraham3k-1.2.3-py3-none-any.whl
Algorithm Hash digest
SHA256 3719a2dded7992f1ac998971e95f0d69c1b893c9e00cfdeb2f2c5971fca66279
MD5 9eb62105d216cd92367b98cb9c1b8640
BLAKE2b-256 c2b56b35bbcc1d6b482a71b0c6bf9d964fb40fa2659f0568e3ccf291e4555654

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page