Skip to main content

Algorithmically predict public sentiment on a topic using VADER sentiment analysis

Project description

abraham

PyPI PyPI - Downloads GitHub PyPI - Python Version GitHub issues GitHub last commit

Algorithmically predict public sentiment on a topic using VADER sentiment analysis.

Installation

Installation is simple; just install via pip.

$ pip3 install abraham3k

Basic Usage

You can run one command to execute the main function news_sentiment_summary.

from abraham3k.prophets import Isaiah

darthvader = Isaiah(news_source="google") 

scores = darthvader.news_sentiment_summary(["amd", 
                               "microsoft", 
                               "tesla", 
                               "theranos"], 
                               window=2)
print(scores)

'''
{'amd': {'avg': 0.32922767,
         'desc_avg': 0.40470959,
         'info': {'news_source': 'google',
                  'splitting': False,
                  'weights': {'desc': 0.1, 'text': 0.8, 'title': 0.1}},
         'nice': 'positive',
         'text_avg': 0.31924348,
         'title_avg': 0.3336193},
 'microsoft': {'avg': 0.22709808,
               'desc_avg': 0.35126282,
               'info': {'news_source': 'google',
                        'splitting': False,
                        'weights': {'desc': 0.1, 'text': 0.8, 'title': 0.1}},
               'nice': 'positive',
               'text_avg': 0.22539444,
               'title_avg': 0.1165625},
 'tesla': {'avg': -0.20538455,
           'desc_avg': -0.22413444,
           'info': {'news_source': 'google',
                    'splitting': False,
                    'weights': {'desc': 0.1, 'text': 0.8, 'title': 0.1}},
           'nice': 'negative',
           'text_avg': -0.19356265,
           'title_avg': -0.28120986},
 'theranos': {'avg': -0.036198,
              'desc_avg': 0.03842,
              'info': {'news_source': 'google',
                       'splitting': False,
                       'weights': {'desc': 0.1, 'text': 0.8, 'title': 0.1}},
              'nice': 'neutral',
              'text_avg': -0.08745,
              'title_avg': 0.2992}}
'''

You can also run a separate function, summary to get the raw scores. This will return a nested dictionary with keys for each topic.

from abraham3k.prophets import Isaiah

darthvader = Isaiah(news_source="google") 

scores = darthvader.news_sentiment(["amd", 
                               "microsoft", 
                               "tesla", 
                               "theranos"], 
                               window=2)
print(scores['tesla']['text'])

'''
[87 rows x 6 columns]
      neg    neu    pos  compound                                           sentence              datetime
0   0.200  0.800  0.000   -0.7184  This weekend two men aged 59 69 died Tesla Mod...  2021-04-20T01:12:33Z
1   0.113  0.714  0.172    0.1027  The National Highway Transportation Safety Adm...  2021-04-19T17:11:20Z
2   0.211  0.789  0.000   -0.5859  Tesla working vehicle tailored Chinese consume...  2021-04-20T09:31:36Z
3   0.000  0.702  0.298    0.7003  Amazon told Bloomberg thatit canned Lord Rings...  2021-04-19T11:30:30Z
4   0.128  0.769  0.103   -0.1779  The first fatal incident involve Tesla one dri...  2021-04-19T15:42:47Z
..    ...    ...    ...       ...                                                ...                   ...
76  0.349  0.509  0.142   -0.7717  Two people killed fiery crash Tesla authority ...  2021-04-19T04:02:56Z
77  0.094  0.906  0.000   -0.3818  LiveUpdated April 20, 2021, 11:51 a.m. ET Apri...  2021-04-20T15:36:21Z
78  0.087  0.837  0.076   -0.0754  Though SpaceX‘s new Starlink satellite current...  2021-04-19T08:25:20Z
79  0.275  0.725  0.000   -0.8225  Over weekend, Tesla Model S involved accident ...  2021-04-20T09:50:12Z
80  0.332  0.514  0.154   -0.7096  My heart sink I write AI going wrong. Behind e...  2021-04-20T10:39:02Z
'''

Changing News Sources

Isaiah supports two news sources: Google News and NewsAPI. Default is Google News, but you can change it to NewsAPI by passing Isaiah(news_source='newsapi', api_key='<your api key') when instantiating. I'd highly recommend using NewsAPI. It's much better than the Google News API. Setup is really simple, just head to the register page and sign up to get your API key.

Detailed Usage

Currently, there are a couple extra options you can use to tweak the output.

When instatiating the class, you can pass up to five optional keyword arguments: news_source and api_key (as explained above), splitting, and weights.

  • loud: bool - Whether or not the classifier prints out each individual average or not. Default: False.
  • splitting: bool - Recursively splits a large text into sentences and analyzes each sentence individually, rather than examining the article as a block. Default: False.
  • weights: dict - This chooses what each individual category (text, title, desc) is weighted as (must add up to 1). Default: weights={"title": 0.1, "desc": 0.1, "text": 0.8}.

When running the main functions, news_sentiment and news_sentiment_summary, there is one requred argument, topics, and two optional keyword arguments: window and up_to.

  • topics: list - The list of the topics (each a str) to search for.
  • up_to: str - The latest day to search for, in ISO format (%Y-%m-%dT%H:%M:%SZ). Default: current date.
  • window: int - How many days back from up_to to search for. Default 2.

Updates

I've made it pretty simple (at least for me) to push updates. Once I'm in the directory, I can run $ ./build-push 1.2.0 "update install requirements" where 1.2.0 is the version and "update install requirements" is the git commit message. It will update to PyPi and to the github repository.

Notes

Currently, there's another algorithm in progress (SALT), including salt.py and salt.ipynb in the abraham3k/ directory and the entire models/ directory. They're not ready for use yet, so don't worry about importing them or anything.

Contributions

Pull requests welcome!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

abraham3k-1.3.2.tar.gz (5.8 MB view details)

Uploaded Source

Built Distribution

abraham3k-1.3.2-py3-none-any.whl (26.7 kB view details)

Uploaded Python 3

File details

Details for the file abraham3k-1.3.2.tar.gz.

File metadata

  • Download URL: abraham3k-1.3.2.tar.gz
  • Upload date:
  • Size: 5.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.2

File hashes

Hashes for abraham3k-1.3.2.tar.gz
Algorithm Hash digest
SHA256 be8915d4a403a216cddbacbf129009a802c7003eb20edefe0003b1b704e9c5ea
MD5 83dbc6491ce9105c72720b972c16fd71
BLAKE2b-256 83a70bb6d7f1da30cbcaf7545eb0a5ef23aa744d8b99292f8c700e964ca3deba

See more details on using hashes here.

File details

Details for the file abraham3k-1.3.2-py3-none-any.whl.

File metadata

  • Download URL: abraham3k-1.3.2-py3-none-any.whl
  • Upload date:
  • Size: 26.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.2

File hashes

Hashes for abraham3k-1.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 aa75f35bb55b621c5f1bec6329a97a54b087222fdd9dec39e9cdd1a7a052dd05
MD5 bda953381957e46a907d859772e61046
BLAKE2b-256 f6ec358fe5e805e7b47e3b2e7a97a86b9bd210d41949a9ffcc6cea6e318aefba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page