Skip to main content

Algorithmically predict public sentiment on a topic using VADER sentiment analysis

Project description

abraham

PyPI PyPI - Downloads GitHub PyPI - Python Version GitHub issues GitHub last commit

Algorithmically predict public sentiment on a topic using flair sentiment analysis.

Installation

Installation is simple; just install via pip.

$ pip3 install abraham3k

Basic Usage

The most simple way of use is to use the _summary functions.

from abraham3k.prophets import Isaiah

watched = ["amd", "tesla"]

darthvader = Isaiah(
      news_source="newsapi",
      newsapi_key="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
      bearer_token="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
      weights={"desc": 0.33, "text": 0.33, "title": 0.34},
)

scores = darthvader.news_summary(
      watched,
      start_time="2021-4-20T00:00:00Z" 
      end_time="2021-4-22T00:00:00Z",
)
print(scores)

'''
{'amd': (56.2, 43.8), 'tesla': (40.4, 59.6)} # returns a tuple (positive count : negative count)
'''


scores = darthvader.twitter_summary(
      watched,
      start_time="2021-4-20T00:00:00Z" 
      end_time="2021-4-22T00:00:00Z",
)
print(scores)

'''
{'amd': (57, 43), 'tesla': (42, 58)} # returns a tuple (positive count : negative count)
'''

You can run the function news_sentiment to get the raw scores for the news. This will return a nested dictionary with keys for each topic.

from abraham3k.prophets import Isaiah

darthvader = Isaiah(news_source="google") 

scores = darthvader.news_sentiment(["amd", 
                               "microsoft", 
                               "tesla", 
                               "theranos"],
                               )
print(scores['tesla']['text'])

'''
                                                 desc              datetime  probability sentiment
0   The latest PassMark ranking show AMD Intel swi...  2021-04-22T18:45:03Z     0.999276  NEGATIVE
1   The X570 chipset AMD offer advanced feature se...  2021-04-22T14:33:07Z     0.999649  POSITIVE
2   Apple released first developer beta macOS 11.4...  2021-04-21T19:10:02Z     0.990774  POSITIVE
3   Prepare terror PC. The release highly anticipa...  2021-04-22T18:00:02Z     0.839055  POSITIVE
4   Stressing ex x86 Canadian AI chip startup Tens...  2021-04-22T13:00:07Z     0.759295  POSITIVE
..                                                ...                   ...          ...       ...
95  Orthopaedic Medical Group Tampa Bay (OMG) exci...  2021-04-21T22:46:00Z     0.979155  POSITIVE
96  OtterBox appointed Leader, proudly 100% Austra...  2021-04-21T23:00:00Z     0.992927  POSITIVE
97  WATG, world's leading global destination hospi...  2021-04-21T22:52:00Z     0.993889  POSITIVE
98  AINQA Health Pte. Ltd. (Headquartered Singapor...  2021-04-22T02:30:00Z     0.641172  POSITIVE
99  Press Release Nokia publish first-quarter repo...  2021-04-22T05:00:00Z     0.894449  NEGATIVE
'''

The same way works for the twitter API (see below for integrating twitter usage).

from abraham3k.prophets import Isaiah

darthvader = Isaiah(news_source="google") 

scores = darthvader.twitter_sentiment(["amd", 
                                    "microsoft", 
                                    "tesla", 
                                    "theranos"]
                                    )

You can also just use a one-off function to get the sentiment from both the news and twitter combined.

from abraham3k.prophets import Isaiah

darthvader = Isaiah(news_source="google") 

scores = darthvader.summary(["tesla", "amd"], weights={"news": 0.5, "twitter": 0.5})

print(scores)
'''
{'amd': (59.0, 41.0), 'tesla': (46.1, 53.9)}
'''

Changing News Sources

Isaiah supports two news sources: Google News and NewsAPI. Default is Google News, but you can change it to NewsAPI by passing Isaiah(news_source='newsapi', api_key='<your api key') when instantiating. I'd highly recommend using NewsAPI. It's much better than the Google News API. Setup is really simple, just head to the register page and sign up to get your API key.

Twitter Functionality

I'd highly recommend integrating twitter. It's really simple; just head to Twitter Developer to sign up and get your bearer_token.

Updates

I've made it pretty simple (at least for me) to push updates. Once I'm in the directory, I can run $ ./build-push 1.2.0 "update install requirements" where 1.2.0 is the version and "update install requirements" is the git commit message. It will update to PyPi and to the github repository.

Notes

Currently, there's another algorithm in progress (SALT), including salt.py and salt.ipynb in the abraham3k/ directory and the entire models/ directory. They're not ready for use yet, so don't worry about importing them or anything.

Contributions

Pull requests welcome!

Detailed Usage

Coming soon. However, there is heavy documentation in the actual code.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

abraham3k-1.4.0.tar.gz (11.6 MB view details)

Uploaded Source

Built Distribution

abraham3k-1.4.0-py3-none-any.whl (25.7 kB view details)

Uploaded Python 3

File details

Details for the file abraham3k-1.4.0.tar.gz.

File metadata

  • Download URL: abraham3k-1.4.0.tar.gz
  • Upload date:
  • Size: 11.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.2

File hashes

Hashes for abraham3k-1.4.0.tar.gz
Algorithm Hash digest
SHA256 23a1605c72edda446214a76cf35c018a721a7c2371d4e1f121f08835c406234e
MD5 3bd2d9d022bd27d01677af53e72d8d8c
BLAKE2b-256 6db1ccc543e04c966ce003d407dbe036cb649659013d6912c00b51f038af0abe

See more details on using hashes here.

File details

Details for the file abraham3k-1.4.0-py3-none-any.whl.

File metadata

  • Download URL: abraham3k-1.4.0-py3-none-any.whl
  • Upload date:
  • Size: 25.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.2

File hashes

Hashes for abraham3k-1.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d6c602a13b59ca573a930ab0f6c1fa84cfbeae1c55cad54504149b9d1991f8e8
MD5 e22a30f477b73d5e96362976346bacab
BLAKE2b-256 89e57038f4579f760e9ea2adda0ce98b3dada2f8ddf799e862fb28fd8d951352

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page