Skip to main content

A Python tool for 3D adaptive binary space partitioning and beyond

Project description


License: MIT PyPI version Build status

Introduction

abspy is a Python tool for 3D adaptive binary space partitioning and beyond: an ambient 3D space is adaptively partitioned to form a linear cell complex with pre-detected planar primitives in a point cloud, where an adjacency graph is dynamically obtained. The tool is implemented to support compact surface reconstruction initially, but can be extrapolated to other applications as well.

Key features

  • Manipulation of planar primitives detected from point clouds
  • Linear cell complex creation with adaptive binary space partitioning (a-BSP)
  • Dynamic BSP-tree (NetworkX graph) updated locally upon insertion of primitives
  • Support of polygonal surface reconstruction from graph cuts
  • Compatible data structure with Easy3D on point clouds, primitives, cell complexes and surfaces
  • Robust Boolean spatial operations underpinned by the rational ring from SageMath's exact kernel

Installation

Install requirements

All dependencies except for SageMath can be easily installed with PyPI:

pip install -r requirements.txt

Optionally, install trimesh and pyglet for benchmarking and visualisation, respectively:

pip install trimesh pyglet

Install SageMath

For Linux and macOS users, the easiest is to install from conda-forge:

conda config --add channels conda-forge
conda install sage

Alternatively, you can use mamba for faster parsing and package installation:

conda config --add channels conda-forge
conda install mamba
mamba install sage

For Windows users, you may have to build SageMath from source or install all other dependencies into a pre-built SageMath environment.

Install abspy

abspy can be found and installed via PyPI:

pip install abspy

Quick start

Here is an example of loading a point cloud in VertexGroup (.vg), partitioning the ambient space into candidate convexes, creating the adjacency graph and extracting the outer surface of the object. For the data structure of a .vg file, please refer to VertexGroup.

import numpy as np
from abspy import VertexGroup, AdjacencyGraph, CellComplex

# load a point cloud in VertexGroup 
vertex_group = VertexGroup(filepath='points.vg')

# normalise the point cloud
vertex_group.normalise_to_centroid_and_scale()

# retrieve planes, bounds and points from VertexGroup
planes, bounds, points = np.array(vertex_group.planes), np.array(vertex_group.bounds), np.array(vertex_group.points_grouped, dtype=object)

# additional planes to append (e.g., the bounding planes)
additional_planes = [[0, 0, 1, -bounds[:, 0, 2].min()]]

# initialise CellComplex from planar prititives
cell_complex = CellComplex(planes, bounds, points, build_graph=True, additional_planes=additional_planes)

# refine planar primitives
cell_complex.refine_planes()

# prioritise certain planes
cell_complex.prioritise_planes()

# construct CellComplex 
cell_complex.construct()

# print info on the cell complex
cell_complex.print_info()

# visualise the cell complex (only if trimesh installation is found)
cell_complex.visualise()

# build adjacency graph of the cell complex
graph = AdjacencyGraph(cell_complex.graph)

# apply random weights
# could instead be the predicted probability for each convex being inside the object
weights_list = np.array([random.random() for _ in range(cell_complex.num_cells)])
weights_list *= cell_complex.volumes(multiplier=10e5)
weights_dict = graph.to_dict(weights_list)

# assign weights to n-links and st-links to the graph
graph.assign_weights_to_n_links(cell_complex.cells, attribute='area_overlap', factor=0.1, cache_interfaces=True)
graph.assign_weights_to_st_links(weights_dict)

# perform graph-cut
_, _ = graph.cut()

# save surface model to an obj file
graph.save_surface_obj('surface.obj', engine='rendering')

Misc

  • Why adaptive?

To avoid redundant partitioning, the adaptive strategy only allows intersecting spatially correlated primitives. This spatial correlation is described by intersection tests between the axis-aligned bounding box (AABB) of a primitive and the cells in the leaf nodes of the BSP tree.

partition

Adaptive space partitioning can significantly reduce computations for cell complex creation, compared to an exhaustive partitioning strategy. The excessive number of cells from the latter not only hinders computation but also inclines to defective surfaces (if any) on subtle structures where inaccurate labels are more likely to be assigned.

adaptive

  • How can abspy be used for surface reconstruction?

With the cell complex constructed and its adjacency maintained, surface reconstruction can be addressed by solving a binary labelling problem that classifies each cell as being inside or outside the object. The surface, therefore, exists in between adjacent cells where one is inside and the other is outside --- exactly where the graph cut is performed. Points2Poly wraps abspy for building surface reconstruction. For more information on this Markov random field formulation, read this paper.

adaptive

License

MIT

Citation

If you use abspy in a scientific work, please cite:

@article{chen2021reconstructing,
  title={Reconstructing Compact Building Models from Point Clouds Using Deep Implicit Fields},
  author={Chen, Zhaiyu and Khademi, Seyran and Ledoux, Hugo and Nan, Liangliang},
  journal={arXiv preprint arXiv:2112.13142},
  year={2021}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

abspy-0.1.0.tar.gz (23.2 kB view details)

Uploaded Source

Built Distribution

abspy-0.1.0-py3-none-any.whl (21.0 kB view details)

Uploaded Python 3

File details

Details for the file abspy-0.1.0.tar.gz.

File metadata

  • Download URL: abspy-0.1.0.tar.gz
  • Upload date:
  • Size: 23.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.8.12

File hashes

Hashes for abspy-0.1.0.tar.gz
Algorithm Hash digest
SHA256 371155287bc52b1588e94d11ff05a79a83885f6e65ca3ca97d70f73883472d26
MD5 253213547158c00cb33bf78d9288dda1
BLAKE2b-256 1f1494ebe95fc0d87bd2cb21c827f3435f06617152cc64bd7e586fe487bc070c

See more details on using hashes here.

File details

Details for the file abspy-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: abspy-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 21.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.8.12

File hashes

Hashes for abspy-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 1d84671e66833a038e4d93337c2256014ecbee72438784d49f7a7e2d47dc7cc1
MD5 9d6a5ae8f75e806daa181a521a65e216
BLAKE2b-256 4b3cbc183fd3568804c3a4f500c9ba2b0f0f099177047e515e30f97e968c8bc6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page